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Abstract

This thesis studies the asymptotic analysis of statistical inference for stochastic processes.
The stochastic processes considered here are mainly real-valued processes whose time-
parameter ranges over a bounded region of Euclidean space. In contrast to the ordinary
asymptotics on stochastic processes, the ergodic theory can not be used. A concept of
the fixed domain asymptotics is adopted here. This means that the set of observed points
converges to a dense subset on the fixed region. In this context, three new results are
obtained. The first one gives an asymptotic property of the quasi-likelihood estimator for
the fractal index of Gaussian processes. The second one shows the local asymptotic mixed
normality of a class of transformed Gaussian models. The last one gives an information
criterion for the locally asymptotically mixed normal models. The above results contribute
to the prediction problem on spatial statistics. Before describing the results, some basic
concepts and known properties on the fixed domain asymptotics, the asymptotic decision
theory and the model selection theory are reviewed.

i





Contents

1 Introduction 1

2 Statistical inference of spatial data 5
2.1 Basic terms and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Fixed domain asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Estimation of fractal dimension . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Methods of simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Fractional Gaussian noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Asymptotic decision theory 15
3.1 Contiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 LAQ, LAMN and LAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Decision theory on estimation . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Non-asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Decision theory on prediction . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.1 Formulation of prediction problem . . . . . . . . . . . . . . . . . . . 18
3.4.2 Non-asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.3 Asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Information criteria 27
4.1 General definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Several criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Local asymptotic maximum risk . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Estimation of fractal index 35
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Consistency and asymptotic normality . . . . . . . . . . . . . . . . 37
5.2.2 Other conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 Preliminary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.2 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.3 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4.4 Proof of Theorem 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 53

iii



iv CONTENTS

5.4.5 Proof of Theorem 5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Transformed Gaussian model 57
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Transformed Gaussian model . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.2 Regularity conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.3 Local asymptotic mixed normality . . . . . . . . . . . . . . . . . . . 60

6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4.1 Examples of Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4.2 Examples of g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.5.1 Reduction to the case of γt = 1 . . . . . . . . . . . . . . . . . . . . 64
6.5.2 Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.5.3 Conditional likelihood function . . . . . . . . . . . . . . . . . . . . 66
6.5.4 A difference operator . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5.5 Taylor’s expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5.6 Commuting filtration . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5.7 A lemma on convergence in L2 . . . . . . . . . . . . . . . . . . . . . 69
6.5.8 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Information criterion for LAMN models 79
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Notations and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Risk of prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.4 Proposed information criterion . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.5 Information criterion for non-limit models . . . . . . . . . . . . . . . . . . 87
7.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.6.1 Scalar-randomness models . . . . . . . . . . . . . . . . . . . . . . . 88
7.6.2 Discretely observed diffusion models . . . . . . . . . . . . . . . . . 90
7.6.3 A partially explosive Gaussian AR model . . . . . . . . . . . . . . . 91

7.7 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 Conclusion 95



Chapter 1

Introduction

This thesis studies the asymptotic analysis of statistical inference for stochastic processes.

The stochastic processes considered here are mainly real-valued processes whose parameter

space is a bounded region of Euclidean space. For example, we deal with a stochastic

process

X = (Xt | t ∈ [0, 1]d), d ≥ 1. (1.1)

In geostatistics, data are observed on a bounded region. Therefore, to deal with stochastic

processes like (1.1) is natural in that area. In contrast to the ordinary asymptotics on

stochastic processes, the ergodic theory can not be used since the observed region is

bounded. Instead of the ergodicity, a concept of the fixed domain asymptotics, or micro-

ergodicity, is adopted here. This means that the observed points converge to a dense subset

in the fixed region. In this context, three new results are obtained. The first one shows

consistency and asymptotic normality of the quasi-maximum likelihood estimator for the

fractal index of Gaussian processes. The second one shows the local asymptotic mixed

normality of a class of transformed Gaussian models. The last one gives an information

criterion for the locally asymptotically mixed normal models. The above results contribute

to the prediction problem on spatial statistics. Before describing the results, some basic

concepts and known properties on the fixed domain asymptotics, the asymptotic decision

theory and the model selection theory are reviewed.

The first three chapters are review. In Chapter 2, we briefly review some definitions

and results on spatial statistics. In particular, the estimation problem of the fractal index

under the fixed domain asymptotics is reviewed. A simulating method for numerical

experiments is touched on there. In Chapter 3, we summarize the asymptotic decision

theory for estimation. The local asymptotic mixed normality is defined there. We also give

the asymptotic decision theory for prediction as an analogy. There seems to be no past
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2 CHAPTER 1. INTRODUCTION

research on this handling of prediction problem. In Chapter 4, several information criteria

are briefly explained. The local asymptotic maximum risk and regret of information

criteria are defined. As an example, the local asymptotic maximum risk of AIC and BIC

is considered.

The next three chapters describe our new results. In Chapter 5, we prove the con-

sistency and asymptotic normality of an estimating method of fractal index proposed by

M. L. Stein. In Chapter 6, we show that a class of transformed Gaussian model has

local asymptotic mixed normality under an assumption that the hidden Gaussian pro-

cess has independent increments. The proof is involved but some examples are given. In

Chapter 7, we propose an information criterion called Bayes-LAMN-IC and discuss its

predictive performance together with numerical experiments. The remaining works are

touched on. Finally we give some discussions in Chapter 8.

Roughly speaking, three pairs of the chapters are closely related, respectively, as in-

dicated in Table 1.1.

Table 1.1: Relations between chapters (The symbol ⇐⇒ denotes “closely related”).

Chapter 2 ⇐⇒ Chapter 5

Chapter 3 ⇐⇒ Chapter 6

Chapter 4 ⇐⇒ Chapter 7

Some notations used throughout the paper are listed below.

• A symbol I(A) for a proposition A is defined by I(A) = 1 if A is true, 0 otherwise. If

A is defined on a probability space, I(A) becomes the indicator function of the event

that A is true.

• A symbol
θ
; denotes the convergence in distribution, where the parameter θ cor-

responds to the true probability distribution. If the true distribution is clearly

specified, we simply use ; instead of
θ
;.

• A symbol α is used for two meanings. One is the fractal index (Chapter 2 and 5).

Another one is the index of submodels (Chapter 4 and 7).

• The index parameter of the stochastic processes, that is, the quantity t of (Xt), is

called time regardless of its dimension.

• The two terms, random fields and stochastic processes, are identically used.
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• For vectors and matrices A, the symbol A′ is used for transposition unless otherwise

stated.

• All nonnegative integers, all rational numbers and all real numbers are denoted by

N, Q are R, respectively.

• Let x and y be any real numbers. Then the symbol bxc denotes the greatest integer

less than or equal to x. The symbol dxe denotes the least integer greater than or

equal to x. The symbol x∧y and x∨y denote min(x, y) and max(x, y), respectively.





Chapter 2

Statistical inference of spatial data

In this chapter, some definitions and results on statistical inference of spatial data are

briefly summarized. In particular, the estimation problem of the fractal index of Gaussian

processes is reviewed.

2.1 Basic terms and notations

Stochastic processes considered here are R-valued processes with the time parameter space

Rd unless otherwise stated.

Definition 2.1. A stochastic process (Xt | t ∈ Rd) is (strictly) stationary if all of its joint

distributions are invariant under any translation in Rd. A stochastic process (Xt | t ∈ Rd)

is intrinsic if its difference (Xt+s−Xt | t ∈ Rd) for any fixed s is a stationary process (e.g.

Chilès & Delfiner (1999)).

Definition 2.2 (Gaussian random field). A stochastic process (Xt | t ∈ Rd) is called

a Gaussian random field if its any joint distribution is multivariate normal.

Definition 2.3 (Transformed Gaussian model). A statistical model Pθ induced by

a stochastic process Xt is called a transformed Gaussian model if Xt is written by an

equation

g(Xt; θ) = Yt (2.1)

with a parametric family of one-to-one functions {g(·; θ) | θ ∈ Θ} and a Gaussian process

Yt subject to a parametric family (Yt) ∼ {Qθ | θ ∈ Θ}.

Remark 2.4. De Oliveira et al. (1997) use a term Bayesian Transformed Gaussian model

to emphasize the Bayesian prediction.

5



6 CHAPTER 2. STATISTICAL INFERENCE OF SPATIAL DATA

2.2 Fixed domain asymptotics

Let us consider a set of finite samples (Xt | t ∈ D), where a finite subset D of Rd denotes

sampling points. The cardinality of D is denoted by n. When n is assumed to increase,

several types of asymptotics can be considered. In particular, if d ≥ 2, asymptotic

properties are usually complicate due to the variousness of the shape of domain. Even

if we restrict D to be a regular lattice, there are several possibilities of asymptotics: D

converges to a dense subset of a bounded region, D converges to a dense subset of Rd, or

D converges to a lattice in Rd. We adopt the first one. This is called the fixed domain

asymptotics (Stein, 1995, 1999). It is also called infill asymptotics (Cressie, 1993) or

micro-ergodicity (Chilès & Delfiner, 1999).

Stein (1999) studied efficiency of the best unbiased prediction under fixed domain

asymptotics. He considered misspecification problem. Namely, he assumed two proba-

bility measures on a fixed region and evaluated the performance of prediction based on

one of the measure when the true measure is another. The prediction problem he treated

is interpolation problem. Interpolation is important for practical purposes. However, he

gave only few asymptotic results on estimation or model selection, as he noted. We try

to solve this problem by using contiguous probability measures in Chapter 3, 4 and 7.

A model selection procedure is constructed from this context. However, a theory that

is consistent to Stein’s one is still not developed in this paper. In fact, the prediction

problem we consider is essentially extrapolation since the predicted stochastic process is

assumed to be independent of the observed stochastic process.

In time series analysis, the fixed domain asymptotics is considered by several re-

searchers. Dohnal (1987) studied the fixed domain asymptotics on estimation of the

diffusion coefficient, where the assumed model is a model of one-dimensional diffusion

processes. The local asymptotic mixed normality (LAMN; see Chapter 3) was proved

there. A main difficulty on the model is that the probability density function is not

explicitly expressed. Genon-Catalot & Jacod (1993, 1994) generalized Dohnal’s result to

multivariate diffusions (but essentially integrable case) and randomized observations. Fur-

thermore, they showed a minimum contrast estimator is optimal in the sense of LAMN. A

related work is given by Yoshida (1997). A survey on this topic is given by Prakasa Rao

(1999).

Further results associated with the fixed domain asymptotics on diffusion-process mod-

els are obtained by Sørensen & Uchida (2003) and Uchida (2003). They dealt with the

case that the diffusion coefficient ε decreases as the number of observation n increases.

The asymptotics that ε decreases under continuous observation is studied by Kutoyants

(1984, 1994), Yoshida (1992a,b) and other researchers. A formal asymptotic expansion
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and a second-order efficiency are discussed by Sei & Komaki (2003) from the viewpoint

of information geometry (Amari, 1987).

2.3 Estimation of fractal dimension

In this section, we describe past works on estimation of fractal dimension of Gaussian

processes. In particular, their properties under fixed domain asymptotics are summarized.

We concentrate to the one-dimensional case. Multi-dimensional and Non-Gaussian cases

are touched on in the last of the section.

The assumed model is semiparametric. The underlying process (Xt | t ∈ [0, 1]) is an

intrinsic Gaussian process with the constant mean µ and the variogram

γ(t) =
1

2
E[(Xs+t −Xs)

2] = ν|t|α + o(|t|α) as |t| ↓ 0. (2.2)

The condition for existence of such a process is that γ(s) is conditionally negative definite:∑
i,j aiajγ(ti − tj) ≤ 0 for any finite set {ti} and {ai} satisfying

∑
i ai = 0. We call α the

fractal index. The Hausdorff dimension D of the sample path is given by

D = 2− α/2 (2.3)

(Adler, 1981). Typical sample paths for several α’s are shown in Fig. 2.1.

Our goal is to find a good estimator of the parameter α from the discrete observations

{Xi/n | i = 0, 1, · · · , n}. The parameters ν and the remainder term in (2.2) are consid-

ered as (infinite-dimensional) nuisance parameters. The estimators studied by the early

researchers are surveyed in this section. Details on the regularity conditions are omitted.

Example 2.5. The fractional Brownian motion BH
t with the Hurst index H ∈ (0, 1) is

defined by

BH
t =

1

Γ(H + 1/2)

[∫ 0

−∞
[(t− s)H−1/2 − (−s)H−1/2]dBs +

∫ t

0

(t− s)H−1/2dBs

]
,

where (Bt | t ∈ (−∞,∞)) is the standard Brownian motion (see e.g. Mandelbrot & van

Ness (1968)). The variogram is given by

1

2
E

[
(BH

t −BH
s )2

]
=

1

2
|t− s|2H .

It satisfies (2.2) with α = 2H and ν = 1/2.

Many estimators are regression-type estimators. Fix an integer k. The basic idea is

to prepare certain quantities yl and xl for l = 1, · · · , k such that yl ' Clx
α
l where Cl
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 0 0.5  1  0  10.5  0  10.5

(a) α = 0.4 (b) α = 1.0 (c) α = 1.6

Figure 2.1: Sample paths of Xt for several α.

does not depend on α. Then an estimator α̂ can be defined as the ordinary least squares

estimator of the regression coefficient:

α̂ =

∑k
l=1(log xl − k−1

∑k
l′=1 log xl′) log yl∑k

l=1(log xl − k−1
∑k

l′=1 log xl′)2
. (2.4)

The asymptotic properties of box-counting estimator are studied by Hall & Wood

(1993). The estimator is a regression-based estimator (2.4) with

yl =



bn/mlc∑

i=1

(Uil − Vil)




2

, xl = l, (2.5)

Uil = max
t∈B(i,l)

Xt, Vil = min
t∈B(i,l)

Xt, (2.6)

B(i, l) = {(i− 1)ml/n, [(i− 1)m + 1]l/n, · · · , iml/n}, (2.7)

where m is a fixed integer. The set B(i, l) is i-th block of m + 1 points when the data are

sampled at every multiple of l/n. A quantity (ml/n)(Uil − Vil) is area of the rectangle

covering the graph {(t,Xt) | t ∈ B(i, l)} (see Fig. 2.2). A fact that Uil−Vil is approximated

by (ml/n)α/2 is used.

The variogram-based estimator is proposed by Constantine & Hall (1994). It is a

regression-based estimator (2.4) with

yl =
1

n− l + 1

n−l∑
j=0

(X(j+l)/n −Xj/n)2, xl = l. (2.8)

This is approximated by ν(l/n)α from the assumption.

The increment-based estimator is proposed by Kent & Wood (1997) and Istas & Lang

(1997), independently. This estimator is a generalization of the variogram-based estima-

tor. An increment of order p ≥ 0 is a finite vector a = (aj | j = −J, · · · , J) for some
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ε

U-V

Figure 2.2: Covering by rectangles (ε = ml/n).

J > 0 such that

J∑
j=−J

jraj = 0 if 0 ≤ r ≤ p, (2.9)

J∑
j=−J

jp+1aj 6= 0. (2.10)

For each l = 1, · · · , k, let Y l(i) be a filtered process defined by

Y l(i) =
J∑

j=−J

ajX(i+jl)/n, (2.11)

for i = Jl, Jl + 1, · · · , n − Jl. Then the increment-based estimator is a regression-type

estimator (2.4) with

yl =
1

n− 2Jl + 1

n−Jl∑

i=Jl

Y l(i)2, xl = l. (2.12)

The generalized least squares method is also proposed by Kent & Wood (1997). As a

generalization of their result, Chan & Wood (2004) shows that the same method as above

works well for transformed Gaussian processes.

The periodogram-based estimator is proposed by Chan et al. (1995). The estimator is

defined by a regression-type estimator (2.4) with

yl = A(ωl)
2, xl = ω−1

l , (2.13)

A(ω) =

∫ 1

0

Xt cos(ω(2t− 1))dt, (2.14)
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where ω1, . . . , ωk are arbitrary frequencies.

An estimator based on the number of level crossing is proposed by Feuerverger et al.

(1994). We call it the level-crossing estimator. Let Yh(t) is the smoothed process defined

by

Yh(t) = h−1

∫

R
K(u/h)Xt+udu, (2.15)

where K : R→ R is a kernel function. The number of the level crossing Nh(u) is defined

by

Nh(u) = ]{t ∈ (0, 1) | Yh(t) = u}. (2.16)

The averaged number of the level crossing is given by

M(h) =

∫

R
Nh(u)du =

∫ 1

0

|Y ′
h(t)|dt (2.17)

Then the estimator is defined by a regression-type estimator (2.4) with

yl = M(hl), xl = hl, (2.18)

where h1, . . . , hk are taken to decrease as n →∞.

The wavelet-shrinkage estimator is proposed by Wang (1997). They use a fact that the

decay rate of wavelet coefficients is related to the fractal index. Let ψj,k(t) = 2j/2ψ(2jx−k)

(j = 0, 1, · · · ; k = 0, 1, · · · , 2j−1) with an appropriate wavelet ψ(·). Let X̂j,k be the (j, k)-

wavelet coefficient of the process X, that is,

X̂j,k =
n∑

i=1

Xi/nψj,k(i/n), (2.19)

Xt =
Jn∑
j=0

2j−1∑

k=0

X̂j,kψj,k(t). (2.20)

The wavelet-shrinkage method is a method that exchanges the empirical wavelet coeffi-

cients X̂j,k by δtn(X̂j,k) = sgn(X̂j,k)(|X̂j,k| − tn)+. Then the wavelet-shrinkage estimator

is defined by

α̂ = 1− 2 log
∑2jn

k=1 δtn(X̂jn,k)

jn

. (2.21)

Stein (1995) proposed an estimator based on Whittle’s likelihood. We call it the

quasi-maximum likelihood estimator (QMLE). It minimizes an approximated expression

of negative log-likelihood
∫ π

−π

In(λ)

f(λ|α)
dλ, (2.22)
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where In(λ) is the periodogram of the difference Xi/n−X(i−1)/n and f(λ|α) is the spectral

density of a long-memory process called the fractional Gaussian noise. The fractional

Gaussian noise is reviewed in the next section. We elucidate the properties of QMLE in

Chapter 5.

Asymptotic order of variance and bias for each estimator is summarized in Table 2.1.

Here we assume that the variogram of the underlying process X is

1

2
E[(Xt −X0)

2] = ν|t|α + ν2|t|α+β + o(|t|α+β) (2.23)

for some β > 0. Regularity conditions on differentiability of the variogram function are

omitted. From the table, the box-counting and variogram-based estimators have larger

order of variance than the increment-based estimator (p ≥ 1) when α ∈ (3
2
, 2). The

periodogram-based and level-crossing estimators need non-trivial selection of k and h,

respectively. Therefore we conclude that the best estimator except the wavelet-shrinkage

and QMLE is the increment-based estimator.

Table 2.1: Asymptotic order of variance and bias for each estimator. The quantity β ap-

pears in (2.23). For the periodogram-based estimator, k denotes the number of frequencies

for which the periodogram is calculated. For the level-crossing estimator, h denotes the

bandwidth of smoothing. For QMLE, it is assumed that α > 1 (Chapter 5). The symbol

‘-’ denotes that the author is unaware of the order.

Estimator Name Variance Bias

α ∈ (0, 3
2
) α ∈ (3

2
, 2) α ∈ (0, 2)

Box-counting n−1 n−(4−2α) n−β

Variogram-based n−1 n−(4−2α) n−β

Increment-based (p ≥ 1) n−1 n−1 n−β

Periodogram-based k−1 k−1 k−β

Level-crossing h h4−2α hβ

Wavelet-shrinkage - - -

QMLE n−1 n−1 n−β

We have treated so far an estimating problem of a fractal index for the observed

process with time parameter space R. The case of the multi-dimensional time is also

needed from a practical point of view. The increment-based estimators are also discussed

in multi-dimensional case: Davies & Hall (1999), Chan & Wood (2000), Zhu & Stein

(2002) and Chan & Wood (2004). Stein’s QMLE (Stein, 1995) is proposed also for multi-
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dimensional case but not theoretically analyzed. For the multi-dimensional case, the edge

effects (Guyon, 1982) must be taken into account as Stein noted.

Another generalization is estimation problem of the fractal index of transformed Gaus-

sian random fields. The results of Hall & Roy (1994) and Chan & Wood (2004) are in

this direction.

2.4 Methods of simulation

Generating methods of a sample path from a given correlation function is briefly described

here. A naive method is to use the Cholesky decomposition of the correlation matrix,

but this method spends much computational time. If the observing points of the process

are regular lattice, the fast Fourier transform (FFT) is useful. For periodic stochastic

processes, the method is clear. Even if the underlying process is not periodic, one can

usually embed it to a periodic process since observed region is bounded under fixed domain

asymptotics.

Chilès & Delfiner (1999) gave the embedding method for the one-dimensional fractional

Gaussian noise. Stein (2001, 2002) gave its generalization to multi-dimensional case,

although a restriction to the parameter range exists. Gneiting (2002) proposed to change

the correlation function by multiplying a correlation function with a compact support.

In Chapter 5, we adopt more practical method: one executes FFT anyway and checks

whether the resulting Fourier coefficients are positive or not. If the coefficients are all

positive, one can use FFT method. If some coefficients are negative, one must use the

Cholesky decomposition.

2.5 Fractional Gaussian noise

We briefly review the fractional Gaussian noise and an estimation problem related to it.

It is needed in Chapter 5. See Beran (1994) and Yajima (2003) for details.

Definition 2.6. The fractional Gaussian noise (FGN) for the discrete-time process {Zi |
i = 1, 2, · · · } is a stationary Gaussian process with mean E[Zi] = 0 and covariance

E[ZiZi+h] = (A/2){|h + 1|α + |h− 1|α − 2|h|α}, where A > 0 and α ∈ (0, 2).

The FGN is introduced by Mandelbrot & van Ness (1968) for modeling self-affine

and long-range phenomena. It is identified with the difference of the fractional Brownian

motion BH
t defined in Example 2.5:

Zi =
√

A{BH
i+1 −BH

i }, i = 1, · · · , n, (2.24)
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where H = α/2. The spectral density of FGN is

f(λ) = f(λ|α) = 2As(α) sin2(λ/2)
∞∑

j=−∞
|2πj + λ|−α−1, λ ∈ (−π, π], (2.25)

where s(α) = Γ(α + 1) sin(πα/2)/π. We have f(λ) ' (As(α)/2)|λ|−α+1 as |λ| → 0.

Hence, if α > 1, the process is a long-memory process. The following proposition about

f(λ) holds (Fox & Taqqu, 1986). We take A such that
∫ π

−π
log f(λ)dλ = 0 for the sake of

convenience.

Proposition 2.7. Let ∂α = ∂/∂α and ∂λ = ∂/∂λ. Then, for each δ > 0 and k ∈ N, there

exists a constant C = C(δ, k) > 0 such that

(1) f(λ|α) is continuous at all (λ, α), λ 6= 0 and f(λ|α) ≥ C−1|λ|−α+1+δ.

(2) For each 0 ≤ p ≤ k and 0 ≤ q ≤ k, ∂p
λ∂

q
αf(λ|α) is continuous at all (λ, α), λ 6= 0 and

|∂p
λ∂

q
αf(λ|α)| ≤ C|λ|−α+1−p−δ.

As a result of (1) and (2), a function g(α) =
∫ π

−π
log f(λ|α)dλ can be differentiated

arbitrarily times under the integral sign.

Whittle’s quasi likelihood is defined by

exp

[
− n

4π

∫ π

−π

{
log σ2 +

In(λ)

σ2f(λ|α)

}
dλ

]
, (2.26)

where In(λ) = (2πn)−1|∑n
j=1 e−

√−1jλZj|2. The quasi-maximum likelihood estimator is

α̂n = argmin σ̂2
n(α), (2.27)

σ̂2
n(α) =

1

2π

∫ π

−π

In(λ)

f(λ|α)
dλ. (2.28)

Then α̂n is strongly consistent, asymptotically normal (Fox & Taqqu, 1986) and asymp-

totically efficient (Dahlhaus, 1989). The asymptotic variance is equal to the inverse J−1

of the Fisher information

J =
1

4π

∫ π

−π

{
∂ log f(λ|α)

∂α

}2

dλ.

The graph of J−1 is shown in Fig. 2.3.
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Chapter 3

Asymptotic decision theory

In this chapter, the facts on asymptotic decision theory are summarized. In particular,

the local asymptotic minimax theorem for prediction problem is proved.

3.1 Contiguity

An important concept in asymptotic decision theory is contiguity of two sequences of

probability measures. We first prepare some basic terms and facts.

Definition 3.1. Let {Pn} and {Qn} be two sequences of probability measures on a

sequence of measurable spaces (Ωn,Bn). Let {An} be a sequence of measurable sets. It

is said that {Qn} is contiguous to {Pn} if Qn(An) → 0 whenever Pn(An) → 0. If Pn is

contiguous to Qn and vice versa, then Pn and Qn are called contiguous.

The following two lemmas are useful. The proofs are given, for example, in Chapter 6

of van der Vaart (1998).

Lemma 3.2 (Le Cam’s first lemma). The following conditions are equivalent.

(i) Qn is contiguous to Pn.

(ii) If dPn/dQn
Qn
; U along a subsequence, then P[U > 0] = 1.

(iii) If dQn/dPn
Pn
; V along a subsequence, then E[V ] = 1.

(iv) For any statistic Tn : Ωn → Rk: If Tn →Pn 0, then Tn →Qn 0.

Lemma 3.3 (Le Cam’s third lemma). Let Xn : Ωn → Rk be a sequence of ran-

dom variables. Suppose that Qn is contiguous to Pn and (Xn, dQn/dPn)
Pn
;(X, V ). Then

L(B) = E[1B(X)V ] defines a probability distribution, and Xn
Qn
; L.

Elementary examples are given below. The first example is treated in Section 3.2.

15
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Example 3.4. Let pn(x|θ) be the product density of a probability density p(x|θ) on R.

Then pn(x|θ + h/
√

n) and p(x|θ) are contiguous under mild conditions. See e.g. Chapter

7 of van der Vaart (1998).

Example 3.5. Let U(a, b) be the uniform distribution on the interval [a, b] in R. Let

Pn = U(0, pn) and Qn = U(0, qn) with positive numbers pn and qn. Then Qn is contiguous

to Pn if and only if lim supn(qn/pn) ≤ 1.

3.2 LAQ, LAMN and LAN

Let Θ be an open subset of Rk. We consider the following conditions on a sequence of

models Pn = {Pθ,n | θ ∈ Θ}. If the measures have density functions with respect to a

common measure, we write like Pn = {p(x|θ) | θ ∈ Θ}.

[LA1] There exists a sequence {γn} of positive numbers such that for any convergent

sequence hn → h ∈ Rk, two measures Pθ+γnhn,n and Pθ,n are contiguous.

[LA2] There exists a sequence (ξn, Jn) such that

log
dPθ+γnhn,n

dPθ,n

−
(

h′nJnξn − 1

2
h′nJnhn

)
θ→ 0 (3.1)

for any convergent sequence hn → h ∈ Rk. Further, the matrices Jn converges to J

in law, where J is almost surely positive definite and generally depends on θ.

[LA3] For any convergent sequence hn → h, the limit distribution of Jn under Pθ+hn/
√

n,n

is independent of h.

[LA4] The matrix J is not random.

Definition 3.6 (LAQ,LAMN,LAN). If a model Pn satisfies [LA1] and [LA2], then

it is called a locally asymptotically quadratic (LAQ) model. If an LAQ model satisfies

also [LA3], then it is called a locally asymptotically mixed normal (LAMN) model. If an

LAMN model satisfies also [LA4], then it is called a locally asymptotically normal (LAN)

model.

Example 3.7 (AR model). Let Xt be an autoregressive (AR) process defined by

Xt = θXt−1 + εt, θ ∈ R, t = 1, 2, · · · . (3.2)

For simplicity, assume εt ∼ N(0, 1). Then the model for (X1, . . . , Xn) is LAQ (but not

LAMN) at |θ| = 1, LAMN (but not LAN) at |θ| > 1, and LAN at |θ| < 1, respectively

(See e.g. Chapter 9 of van der Vaart (1998)).
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We prepare the following additional condition and give a necessary and sufficient

condition to LAMN.

[LA3’] The sequence (ξn, Jn) in [LA2] converges to a random variable (ξ, J) in law. Further,

ξ given J is normal with mean 0 and variance J−1.

Theorem 3.8 (Equivalent condition to LAMN). The conditions [LA2] and [LA3’]

imply [LA1]–[LA3]. The converse also holds.

Proof. The equivalence of [LA3] and [LA3’] under [LA1] and [LA2] is proved in Le Cam

& Yang (2000). It is sufficient to show that [LA2] and [LA3’] imply [LA1]. This follows

from the Le Cam’s first lemma.

Remark 3.9. Several authors assume the conditions [LA1]–[LA3] only for any constant

sequence hn = h ∈ R (e.g. Ibragimov & Has’minskii (1981)), then we can construct the

following unusual example:

Pθ,n =

{
N(θ, 1/n) if θ 6= 1/n,

N(θ, 1) if θ = 1/n.
(3.3)

This model satisfies [LA1]–[LA4] with γn = 1/
√

n for any constant sequence hn = h but

not for hn = 1/
√

n at θ = 0. Nevertheless, the theorems in Section 3.4 hold under this

weaker conditions. If we plug-in the maximum likelihood estimator θ̂ to the parameter θ,

it is more convenient to assume the stronger condition [LA1]-[LA4].

3.3 Decision theory on estimation

In this section, we give only a brief description about decision theory on estimation. The

details of notations and proofs are given in Chapter 8 of van der Vaart (1998). We assume

that the model is LAN. The LAMN case is similarly described by Jeganathan (1982, 1983).

3.3.1 Non-asymptotic results

Let ξ ∼ N(h, Σ), where h ∈ Rk is an unknown vector and Σ = J−1 ∈ Rk×k is a known

matrix.

Lemma 3.10 (Convolution). Let m ∈ N and A ∈ Rm×k. The null distribution L of any

randomized equivariant-in-law estimator of Ah can be decomposed as L = N(0, AΣA′)∗M
for some probability measure M , where ∗ denotes the convolution. The only randomized

equivariant-in-law estimator for which M is degenerate at 0 is Aξ.
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The loss function ` defined on Rk is called bowl-shaped if the level set {x | `(x) ≤ c}
is convex and symmetric about the origin for any c ≥ 0. The risk r of an estimator T of

Ah is defined by r(h) = Eh[`(T − Ah)].

Lemma 3.11 (Anderson’s lemma). For any bowl-shaped loss function ` on Rk, every

probability measure M on Rk and every covariance matrix Σ,

∫
`dN(0, Σ) ≤

∫
`d[N(0, Σ) ∗M ]. (3.4)

Lemma 3.12 (Minimax property). For any bowl-shaped loss function `, the maximum

risk of any randomized estimator T of Ah is bounded below by E0`(Aξ). Consequently,

Aξ is a minimax estimator for Ah.

3.3.2 Asymptotic results

The following theorems are important consequence of LAN.

Theorem 3.13 (Convolution). Let (Pθ,n | θ ∈ Θ) be a LAN model. Let ψ be differen-

tiable at θ. Let Tn be a regular estimator sequence, that is, for any h,
√

n(Tn−ψ(θ+h/
√

n))

converges to a limit distribution Lθ under the true parameter θ + h/
√

n. Then there exist

a probability measure Mθ such that Lθ = N(0, ψ̇θJ
−1
θ ψ̇′θ) ∗Mθ.

Theorem 3.14 (Local asymptotic minimax theorem). Let (Pθ,n | θ ∈ Θ) be a LAN

model. Let ψ be differentiable at θ. Let Tn be any estimator sequence. Then for any

bowl-shaped loss function `

sup
I∈F (Rk)

lim inf
n→∞

max
h∈I

Eθ+h/
√

n`(
√

n(Tn − ψ(θ + h/
√

n))) ≥
∫

`dN(0, ψ̇θJ
−1
θ ψ̇′θ). (3.5)

Here F (Rk) denotes all finite subsets of Rk.

3.4 Decision theory on prediction

3.4.1 Formulation of prediction problem

We fix a LAN model {pn(x|θ) | θ ∈ Θ ⊂ Rk} throughout this section. The results are

naturally generalized to LAMN models. The corresponding limit model is defined by

{p(ξ|h) = φ(ξ|h, J−1) | h ∈ Rk}, where h, ξ and J are defined in the conditions [LA1]–

[LA4] of Section 3.2 and φ(x|µ, Σ) is the density of normal distribution with the mean
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vector µ and the covariance matrix Σ. Although we can always take the identity matrix

for J by a coordinate transformation, we leave it since J plays a role of the metric.

Let x and y be random variables according to pn(·|θ). We consider a prediction

problem of the distribution of y from the observed value x. A predictive density func-

tion, or a density estimator, is written by qn(y|x). A typical predictive density is the

plug-in predictive density qn(y|x) = pn(y|θ̂) with some estimator θ̂. Another typical

one is the Bayesian predictive density qn(y|x) =
∫

pn(y|θ)pn(θ|x)dθ, where pn(θ|x) is

the posterior density under a prior distribution. The loss function of the prediction is

defined by the Kullback-Leibler divergence
∫

pn(y|θ)[log pn(y|θ)/qn(y|x)]dy. The risk is∫ ∫
pn(x|θ)pn(y|θ)[log pn(y|θ)/qn(y|x)]dydx. The symbol Eθ denotes expectation with re-

spect to both x and y under the true parameter θ. We usually abbreviate an index θ as

J = Jθ.

3.4.2 Non-asymptotic results

We first consider the prediction problem for limit models. The problem is prediction of

η from an observation ξ, where η and ξ are independently and identically distributed

according to p(η|h) and p(ξ|h) with true parameter h ∈ Rk. Expectations are taken with

respect to both ξ and η: Ehf(ξ, η) =
∫ ∫

f(ξ, η)p(ξ|h)p(η|h)dξdη.

We denote E = Ek as the identity matrix of size k. For Bayesian inference, we often

use a prior density function p(h|Λ) = φ(h|0, Λ) with some covariance matrix Λ. Recall

that φ is the probability density of the normal distribution. We also consider the Lebesgue

measure P (dh) on Rk as an improper prior distribution. We call it the uniform prior.

A positive measure P (dh) with the infinite total measure is called an improper prior

distribution if the posterior distribution

P (dh|ξ) =
p(ξ|h)P (dh)∫
p(ξ|h)P (dh)

(3.6)

expresses a probability distribution. If we take p(ξ|h) and P (dh) as above, we obtain

P (dh|ξ) = φ(h|ξ, J)dh. Advantages to use the uniform prior are described later.

The loss of a predictive distribution q(η|ξ) is defined by the Kullback-Leibler divergence

lh(q(·|ξ)) =

∫
p(η|h) log

p(η|h)

q(η|ξ) dη,

The risk is denoted by rh(q) =
∫

p(ξ|h)l(q(·|ξ)) dξ.

The next two lemmas are elementary obtained.
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Lemma 3.15. Assume that the prior distribution for h is N(0, Λ). Then the Bayesian

predictive density qΛ(η|ξ) is

qΛ(η|ξ) = φ(η|Aξ, Σ), (3.7)

where A = (J+Λ−1)−1J and Σ = J−1+(J+Λ−1)−1. Twice the loss and risk are given by

2lh(q
Λ(·|ξ)) = (h−Aξ)′Σ−1(h−Aξ) + tr[Σ−1J−1]− k − log det[Σ−1J−1],

2rh(q
Λ) = h′(E−A)′Σ−1(E−A)h + tr[A′Σ−1AJ−1]

+tr[Σ−1J−1]− k − log det[Σ−1J−1].

Lemma 3.16. Assume that the prior distribution of h is the uniform prior. Then the

Bayesian predictive density qB(η|ξ) is

qB(η|ξ) = φ(η|ξ, 2J−1). (3.8)

Twice the loss and risk are given by

2lh(q
B(·|ξ)) = (h−ξ)′J(h−ξ)/2− k/2 + k log 2,

2rh(q
B) = k log 2.

In particular, lh(q
Λ(·|ξ)) and rh(q

Λ) tend to lh(q
B(·|ξ)) and rh(q

B), respectively, as Λ →∞.

Here Λ →∞ means that all the eigenvalues of Λ tend to ∞ simultaneously.

We note the concept of randomization here. In general, the predictive density q(η|ξ)
does not need to be measurable with respect to (ξ, η), that is, one can consider a ran-

domized predictive density q(η|ξ, u) with a random variable u independent of ξ and η.

The quantity u is considered as an ancillary statistic. The word “randomized” is usually

omitted in the following because u can be always conditioned without any costs.

The following lemma is an analogy of Lemma 3.10. It states that the Bayesian predic-

tive distribution is optimal in the class of translation-equivariant predictive distributions.

Lemma 3.17 (Translation-equivariant distribution). Assume that q(η|ξ) is equiv-

ariant, that is, q(η + c|ξ + c) is independent of c ∈ Rk. Then there exists a probability

density function f such that

q(η|ξ) = f(η − ξ). (3.9)

Furthermore, the Bayesian predictive density qB(η|ξ) under the uniform prior is the unique

best equivariant predictive density.
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Proof. Any predictive density is written as q(η|ξ) = g(η − ξ, η + ξ) with a function g

since (η, ξ) and (η − ξ, η + ξ) are one-to-one. From the assumption, g(η − ξ, η + ξ + 2c)

is independent of c. Thus q is written as (3.9). The function f is indeed a probability

density function because
∫

f(x)dx =
∫

q(η|ξ)dη = 1. We next prove the latter statement.

Since the Bayesian predictive density function qB(η|ξ) = φ(η|ξ, 2J−1) under the uniform

prior is same as the marginal density function φ(η − ξ|0, 2J−1) of η − ξ, we obtain

rh(q)− rh(q
B) = Eh

[
log

qB(η|h)

f(η − ξ)

]
≥ 0 (3.10)

for any probability density function f and any h ∈ Rk. Here the equality holds if and

only if f(η − ξ) = qB(η|ξ).

Lemma 3.18 (Minimax property of Bayesian prediction). Let q(η|ξ) be any pre-

dictive density. Then the following inequality holds:

sup
h∈Rk

rh(q) ≥ sup
h∈Rk

rh(q
B) = r0(q

B). (3.11)

Proof. For any predictive density q(η|ξ) and any finite positive definite matrix Λ, we

obtain

sup
h∈Rk

rh(q) ≥
∫

rh(q)φ(h|0, Λ)dh

≥
∫

rh(q
Λ)φ(h|0, Λ)dh

= (1/2)tr[(E−A)′Σ−1(E−A)Λ] + (1/2)tr[A′Σ−1AJ−1]

(1/2)tr[Σ−1J−1]− (k/2)− (1/2) log det[Σ−1J−1],

where A = (J +Λ−1)−1J and Σ = J−1 +(J +Λ−1)−1. The second inequality above follows

from the fact that the Bayesian predictive density attains the Bayes risk. Finally, putting

Λ = λJ−1 and taking λ →∞, we obtain

sup
h∈Rk

rh(q) ≥ (k/2) log 2. (3.12)

The right hand side is the risk of qB(η|ξ).

3.4.3 Asymptotic results

Recall that {pn(x|θ) | θ ∈ Θ ⊂ Rk} is LAN. The following lemma is an analogy of

Lemma 8.3 in van der Vaart (1998).
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Lemma 3.19. Let qn(y|x) be a sequence of predictive densities such that the joint distri-

bution sequence qn(y|x)pn(x|θ) is contiguous to pn(y|θ)pn(x|θ) and

qn(y|x)

pn(y|θ)
θ+h/

√
n

; Lh, (3.13)

where Lh is some limit distribution depending on h. Then there exists a predictive distri-

bution q(η|ξ) such that q(η|ξ)/p(η|0) has distribution Lh for every h.

Proof. By Theorem 7.10 in van der Vaart (1998), there exists a randomized statistic

T (ξ, η, u) such that

qn(y|x)

pn(y|θ)
θ+h/

√
n

; T (ξ, η, u) (3.14)

for any h ∈ Rk, where (ξ, η) is distributed according to p(ξ|h)p(η|h) and u is a random

variable independent of (ξ, η). Define q(η|ξ) by T (ξ, η, u) = q(η|ξ)/p(η|0). We show that

q(η|ξ) is a conditional probability density function of η given ξ. The proof is similar to

Le Cam’s first lemma (van der Vaart, 1998, Lemma 6.4). Let

Qn = qn(y|x)pn(x|θ)dxdy, Pn = pn(y|θ)pn(x|θ)dxdy, µn =
Pn + Qn

2
.

Let

Un =
dPn

dQn

=
pn(y|θ)
qn(y|x)

, Vn =
dQn

dPn

=
qn(y|x)

pn(y|θ) , Wn =
dPn

dµn

=
2pn(y|θ)

pn(y|θ) + qn(y|x)
.

Let ξn be that defined in the condition [LA2]. For any subsequence of n, there exists a

further subsequence (denoting it by n for simplicity) such that

(Un, ξn)
Qn
;(U, ξ), (Vn, ξn)

Pn
;(V, ξ), (Wn, ξn)

µn
;(W, ξ) (3.15)

with some random variables U , V and W . Since V is just equal to T under h = 0, it is

sufficient to prove that E[V |ξ] = 1. Let f : [0,∞] → R and φ : Rk → R are bounded

continuous functions. Since (3.15), we obtain

E[f(U)φ(ξ)] = E[(2−W )f(W/(2−W ))φ(ξ)].

Take a sequence {fi(x)}∞i=1 such that fi(x) ↘ I(x=0). By using the dominated-convergence

theorem, we obtain

E[I(U=0)φ(ξ)] = 2E[I(W=0)φ(ξ)]. (3.16)

Similarly,

E[f(V )φ(ξ)] = E[Wf((2−W )/W )φ(ξ)].
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By taking fi(x) ↗ x and using the monotone convergence theorem, we obtain

E[V φ(ξ)] = E[(2−W )I(W>0)φ(ξ)] = 2E[I(W>0)φ(ξ)]− E[Wφ(ξ)]. (3.17)

Since Eµn [Wn|x] = 1, Eµn [Wnφ(ξn)] = Eµn [φ(ξn)]. By taking n → ∞ and by using

boundedness of Wn, we obtain

E[Wφ(ξ)] = E[φ(ξ)]. (3.18)

By (3.16), (3.17) and (3.18), we obtain

E[I(U=0)φ(ξ)] + E[V φ(ξ)] = E[φ(ξ)]. (3.19)

By contiguity of Qn to Pn, the first term in the left hand side is zero (Le Cam’s first

lemma). Thus E[V φ(ξ)] = E[φ(ξ)] for any bounded continuous function φ. This implies

E[V |ξ] = 1.

Definition 3.20 (Regularity). The predictive density function qn(y|x) is said to be

regular if there exists a probability density function f such that

qn(y|x)

pn(y|θ)
θ+h/

√
n

;
f(η − ξ)

p(η|0)
(3.20)

for any h.

Theorem 3.21. Assume that {pn(·|θ) | θ ∈ Θ} is LAN. Let qn(y|x) be a regular predictive

density. Then, for any hn → h,

lim inf
n→∞

Eθ+h/
√

n

[
log

pn(y|θ + h/
√

n)

qn(y|x)

]
≥ Eh

[
log

p(η|h)

qB(η|ξ)
]

. (3.21)

Proof. Note that
∫

p log(p/q) =
∫

p [log(p/q)− 1 + (q/p)] for any densities p and q. By

using the Portmanteau lemma for a non-negative continuous function (van der Vaart,

1998), we obtain

lim inf
n→∞

Eθ+h/
√

n

[
log

pn(y|θ + h/
√

n)

qn(y|x)

]
≥ Eh

[
log

p(η|h)

q(η|ξ)
]

. (3.22)

The right hand side is minimized at q = qB by Lemma 3.17.

Theorem 3.22 (Local asymptotic minimax theorem). Assume that {pn(·|θ) | θ ∈
Θ} is LAN. Then

sup
I∈F (Rk)

lim inf
n→∞

max
h∈I

Eθ+h/
√

n

[
log

pn(y|θ + h/
√

n)

qn(y|x)

]
≥ E0

[
log

p(η|0)

qB(η|ξ)
]

, (3.23)

where F (Rk) denotes all finite subsets of Rk.
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Proof. The proof is similar to the local asymptotic minimax theorem for estimation

(van der Vaart, 1998). We recall that Eθ (resp. Eh) denotes expectation not only with

respect to x (resp. ξ) but also with respect to y (resp. η). It is sufficient to prove that, for

any subsequence of {n}, there exists a further subsequence such that (3.23) holds along

the sequence. We can assume that the distributions of log(pn(y|θ)/qn(y|x)) are tight un-

der θ along such a sequence. Otherwise, the left hand side of (3.23) is infinity. Prohorov’s

lemma implies that, for any subsequence, there exist a further subsequence (denoting it

by n for simplicity) such that

(
pn(y|θ)
qn(y|x)

, log
pn(y|θ + h/

√
n)

pn(y|θ)
)

(3.24)

converges in distribution to a limit under θ. By Le Cam’s third lemma, pn(y|θ)/qn(y|x)

converges in distribution also under every θ + h/
√

n. Therefore Lemma 3.19 implies that

there exist a (randomized) predictive density q(η|ξ) such that

pn(y|θ)
qn(y|x)

θ+h/
√

n
;

p(η|0)

q(η|ξ)
for any h. From Lemma 3.18, it is sufficient to prove that

sup
I∈F (Rk)

lim inf
n→∞

sup
h∈I

Eθ+h/
√

n

[
log

pn(y|θ + h/
√

n)

qn(y|x)

]
≥ sup

h∈Rk

Eh

[
log

p(η|h)

q(η|ξ)
]

.

Let h0 ∈ Qk and F (Qk) be all finite subsets of Qk. Take a sequence Ij ∈ F (Qk) such that

I1 ⊂ I2 ⊂ · · · and
⋃

j Ij = F (Qk). The following evaluation holds:

sup
I∈F (Rk)

lim inf
n→∞

sup
h∈I

Eθ+h/
√

n

[
log

pn(y|θ + h/
√

n)

qn(y|x)

]

≥ sup
I∈F (Qk)

lim inf
n→∞

sup
h∈I

Eθ+h/
√

n

[
log

pn(y|θ + h/
√

n)

qn(y|x)

]

= lim
j→∞

lim inf
n→∞

sup
h∈Ij

Eθ+h/
√

n

[
log

pn(y|θ + h/
√

n)

qn(y|x)

]

= lim
j→∞

sup
h∈Ij

Eθ+h/
√

nj

[
log

pnj
(y|θ + h/

√
nj)

qnj
(y|x)

]
(3.25)

≥ lim inf
j→∞

Eθ+h0/
√

nj

[
log

pnj
(y|θ + h0/

√
nj)

qnj
(y|x)

]

≥ Eh0

[
log

p(η|h0)

q(η|ξ)
]

, (3.26)

where the equality in (3.25) uses some subsequence {nj} by the diagonal argument and

the last inequality (3.26) comes from the Portmanteau lemma for non-negative continuous
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functions (see the proof of Theorem 3.21). Since h0 ∈ Qk is arbitrary, we obtain

sup
I∈F (Rk)

lim inf
n→∞

sup
h∈I

Eθ+h/
√

n

[
log

pn(y|θ + h/
√

n)

qn(y|x)

]
≥ sup

h∈Qk

Eh

[
log

p(η|h)

q(η|ξ)
]

. (3.27)

The right hand side is equal to the supremum over Rk by Fatou’s lemma.

The following theorem states a sufficient condition that the equality in Theorem 3.22

holds. It is expected that the Bayesian predictive density qπ
n(y|x) with a smooth prior π

is asymptotically optimal. However, it is not case in general. More reasonable conditions

may be constructed but we do not pursue this problem. A related topic is treated in

Chapter III of Ibragimov & Has’minskii (1981).

Theorem 3.23. Let qn(y|x) be a sequence of predictive densities. Assume that the se-

quence log pn(y|θ)/qn(y|x) converges to log p(η|0)/q(η|ξ) in distribution Pθ,n. Assume also

that the set of random variables log pn(y|θ+h/
√

n)/qn(y|x) under Pθ+h/
√

n,n are uniformly

integrable in all n for each h. Then

sup
I∈F (Rk)

lim inf
n→∞

max
h∈I

Eθ+h/
√

n

[
log

pn(y|θ + h/
√

n)

qn(y|x)

]
= sup

h∈Rk

Eh

[
log

p(η|h)

q(η|ξ)
]

. (3.28)

In particular, if q(η|ξ) = qB(η|ξ), the sequence qn(y|x) is optimal in the sense of the local

asymptotic minimax property.

Proof. Put ah = Eh[log p(η|h)/q(η|ξ)] and an,h = Eθ+h/
√

n[log pn(y|θ + h/
√

n)/qn(y|x)].

By the uniform integrability, limn an,h = ah for any h follows. For I ∈ F (Rk), we obtain

limn maxh∈I an,h = maxh∈I limn an,h = maxh∈I ah. Taking supremum over I ∈ F (Rk), we

obtain the result.





Chapter 4

Information criteria

In this chapter, the theory of information criteria are summarized. The asymptotic deci-

sion theory for model selection is touched on.

4.1 General definition

An important problem in data analysis is to select one from several proposed models

based on data. Information criteria provide a tool for selecting a suitable model. We refer

Burnham & Anderson (2002) for a review on the model selection theory.

Let X be a measurable space. Let P = {p(·|θ) | θ ∈ Θ} be a statistical model on X ,

that is, a set of probability densities with respect to a fixed measure µ on X . Suppose

that Θ is a k-dimensional manifold. In most cases, Θ is an open subset of Rk. We consider

subfamilies indexed by a finite set A. Specifically, Let Pα = {p(·|θ) | θ ∈ Θα} for α ∈ A,

where Θα is a kα-dimensional submanifold of Θ. The general definition of information

criteria is as follows.

Definition 4.1 (Information criterion). An information criterion is a function s :

A × X 7→ R. For given data x ∈ X , the selected model based on s is α̂ = α̂(s) that

minimizes s(α, x).

Almost information criteria are defined as an asymptotically unbiased estimator for

the risk of the predictive density. Let qα(y|x) be a predictive density when the submodel

Θα is assumed. The risk we use is the expected Kullback-Leibler divergence:

rθ(qα) =

∫ ∫
p(y|θ)p(x|θ) log

p(y|θ)
qα(y|x)

dy dx. (4.1)

This is equivalent to −2
∫∫

p(y|θ)p(x|θ) log qα(y|x) dy dx. Then an information criterion

has a form −2 log qα(x|x) + 2bα(x) with a bias-corrected term bα(x).

27
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4.2 Several criteria

We list several information criteria. AIC and PIC defined below are related to our criterion

for LAMN models discussed in Chapter 7. The criteria except AIC and PIC are not used

in the other chapters.

Definition 4.2 (AIC, Akaike (1974)). Akaike’s Information Criterion (AIC) is defined

by

AIC(α) = −2 log p(x|θ̂α) + 2kα, (4.2)

where θ̂α is the maximum likelihood estimator in Θα.

Definition 4.3 (PIC, Kitagawa (1997)). Let πα(θ) be a prior distribution that ranges

over Θα for each α ∈ A. Then PIC is defined by

PIC(α) = −2 log qπα(x|x) + kα, (4.3)

where qπα(y|x) is the Bayesian predictive density under the prior πα(θ) and kα is the

dimension of Θα.

Remark 4.4. Kitagawa’s original paper (Kitagawa, 1997) deals with the criterion for

more general prior under the linear model. Specifically, it assumes that a Gaussian Bayes

model of x|θ ∼ N(Aθ, R) and θ ∼ N(θ0, Q). Then two types of PIC are defined by

PIC1(α) = −2 log qπ(x|x) + 2tr[R−1(W + R)(2W + R)−1W ], (4.4)

PIC2(α) = −2 log qπ(x|x) + 2tr[(2W + R)−1W ], (4.5)

where W = AQA′. The difference of the bias term comes from the difference of the

true distribution assumed. The first assumes that the marginal distribution p(x) =∫
p(x|θ)π(θ)dθ is true and the second assumes that the conditional distribution p(x|θ)

with some θ is true. Our definition above corresponds to PIC2 under Q → ∞. In addi-

tion, PIC is also found in (Akaike, 1980, eq. (3.8)).

In the following, we restrict the sample space to X = En where E = Rd with some

fixed d. Assume that x = {x1, · · · , xn} ∈ En is an i.i.d. sequence. The model is the set

{f(x1|θ) | θ ∈ Θ} of probability densities on E. Let Ĝ be the the empirical distribution

n−1
∑n

i=1 δxi
(·), where δz is the Dirac measure concentrated at z. Let G be the space of

all distributions on E and Fθ be the distribution corresponding to θ. Let Tα : G → Θα be

a Fisher consistent estimator of θ, that is, Tα(Fθ) = θ if θ ∈ Θα. We put θ̂α(x) = Tα(Ĝ).

The influence function T
(1)
α (z; G) for z ∈ E and G ∈ G is defined by

T (1)
α (z; G) = lim

ε→0

Tα((1− ε)G + εδz)

ε
. (4.6)
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Definition 4.5 (GIC, Konishi & Kitagawa (1996)). The Generalized information

criterion (GIC) is defined by

GIC(α) = −2
n∑

i=1

log f(xi|Tα(Ĝ)) + 2bα(Ĝ), (4.7)

where

bα(G) = tr

[∫
T (1)

α (z; G)
∂

∂θ′α
log f(z|Tα(G))dG(z)

]
. (4.8)

Definition 4.6 (TIC, Takeuchi (1976)). When Tα is the maximum likelihood estima-

tor θ̂α, GIC is called Takeuchi’s Information Criterion (TIC).

Definition 4.7 (EIC, Ishiguro et al. (1997)). EIC is defined by

EIC(α) = −2
n∑

i=1

log f(xi|θ̂α(x)) + 2bα(Ĝ), (4.9)

where

bα(G) = B−1

B∑

b=1

n∑
i=1

[
log f(x∗b,i|θ̂α(x∗b))− log f(x∗b,i|θ̂α(x))

]
(4.10)

and x∗b = {x∗b,1, · · · , x∗b,n} for b = 1, · · · , B are bootstrap samples (Efron, 1979) that are

sampled subject to G.

Definition 4.8 (Cross validation, e.g. Stone (1977)). Cross validation is defined by

CV(α) = −2
n∑

i=1

log f(xi|θ̂α(x−i)), (4.11)

where x−i = {xj}j 6=i and θ̂α(x−i) is the maximum likelihood estimator based on data

x−i.

Definition 4.9 (BIC, Schwarz (1978)). BIC is defined by

BIC(α) = −2
n∑

i=1

log f(xi|θ̂α) + kα log n. (4.12)

Remark 4.10. BIC has larger risk than AIC in the local uniform sense as shown in

Section 4.3. This contrasts with BIC’s pointwise consistent property. This phenomenon

is similar to that of Hodges’ superefficient estimator (van der Vaart, 1998, p.109).
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We summarize the properties about asymptotic unbiasedness into the following theo-

rem. We simply say that the submodel Pα is true instead of saying that Pα includes the

true density. The regularity conditions and proofs are omitted.

Theorem 4.11. AIC is an asymptotically unbiased estimator for the risk of the plug-in

predictive density pn(y|θ̂α(x)) if Pα is true. PIC is an asymptotically unbiased estimator

for the risk of the Bayesian predictive density
∫
Θα

pn(y|θ)πα(θ|x)dθ if Pα is true. GIC,

TIC and EIC are asymptotically unbiased estimators for the risk of the plug-in predictive

density without supposing that Pα is true.

Remark 4.12. As considered in Chapter 7, the asymptotic unbiasedness of AIC and

PIC holds also under the local alternative hypothesis, that is, the hypothesis that the

true density is pn(·|θ + h/
√

n) for θ ∈ Θα and h ∈ Rk.

4.3 Local asymptotic maximum risk

We fix a LAN model {pn(x|θ) | θ ∈ Θ} and submodels {Θα | α ∈ A}. Let {p(ξ|h) | h ∈
Rk} be the limit model. Assume that the limit Hα ⊂ Rk of the submodel Θα exists (see

Chapter 7 for the exact meaning). Consider the model-selection problem for the non-limit

model and the limit model.

We prepare some notations for the non-limit models. We use the expected Kullback-

Leilber divergence

rθ(qn) =

∫
pn(x|θ)

∫
pn(y|θ) log

pn(y|θ)
qn(y|x)

dxdy, (4.13)

as the risk of prediction. The risk of an information criterion s is defined by rθ(qs,n),

where qs,n is the plug-in predictive density corresponding to the selected model by s:

qs,n(y|x) =
∑
α∈A

pn(y|θ̂α)I(α̂(s)=α).

The symbols rh(q) and qs for the limit models are similarly defined.

Shibata (1986) studied the minimax risk and minimax regret of generalized FPE.

Although Stone (1982) studied minimax property of AIC from the viewpoint of LAN

setting, the risk he adopted is sum of the Kullback-Leibler divergence and a penalty term.

The following simple example elucidates a weak point of BIC. The result is essentially

stated in Shibata (1986).
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Example 4.13. Assume that X1, · · · , Xn ∼ N(θ, 1) i.i.d. with θ ∈ Θ = R. Consider two

models ΘI = {0} and ΘII = R. Thus A = {I, II}. Then, the asymptotic maximum risk of

AIC and BIC is, respectively,

lim sup
n→∞

sup
θ∈R

rθ(qAIC,n) = sup
h∈R

rh(qAIC) < ∞, (4.14)

lim sup
n→∞

sup
θ∈R

rθ(qBIC,n) = ∞. (4.15)

The risk of each criterion is shown in Fig. 4.1 for n = 10 and n = 100.

Proof. The equality in (4.14) is easily checked. Let us consider a generalized criterion

s(α) = −2 log pn(x|θ̂α) + cnkα, where cn is a sequence of positive numbers. AIC and

BIC correspond to cn = 2 and cn = log n, respectively. We show that the asymptotic

maximum risk is finite if and only if {cn} is bounded. The maximum likelihood estimator

under each model is θ̂I = 0 and θ̂II = x̄ =
∑

xi/n, respectively. The information criteria

are s(I) =
∑

x2
i and s(II) =

∑
x2

i − nx̄2 + cn (common constants are neglected). The

selected predictive distribution satisfies

−2 log qs,n(y|x) = {∑ y2
i }I(nx̄2≤cn) + {∑(yi − x̄)2}I(nx̄2>cn).

Twice the Kullback-Leibler divergence is

2

∫
pn(y|θ) log

pn(y|θ)
qs,n(y|x)

dy = nθ2I(nx̄2≤cn) + n(x̄− θ)2I(nx̄2>cn). (4.16)

Twice the risk is

2rθ(qs,n) = nθ2

∫

nx̄2≤cn

pn(x|θ)dx +

∫

nx̄2>cn

n(x̄− θ)2pn(x|θ)dx

= nθ2

∫

(
√

nθ+z)2≤cn

φ(z)dz +

∫

(
√

nθ+z)2>cn

z2φ(z)dz, (4.17)

where φ(z) is the probability density function of N(0, 1). The second term of (4.17) is

[0,1]-valued and therefore bounded. The supremum of the first term over θ ∈ R is

sup
θ∈R

nθ2

∫

(
√

nθ+z)2≤cn

φ(z)dz = sup
h∈R

h2

∫

(h+z)2≤cn

φ(z)dz =: sup
h∈R

ρn(h). (4.18)

This is finite if and only if {cn} is bounded. In fact, if cn → ∞, then ρn(−√cn) =

cn

∫ 2
√

cn

0
φ(z)dz →∞. On the other hand, if cn ≤ c, then

lim
h→∞

ρn(h) ≤ lim
h→∞

h2 2
√

c e−(h−√c)2/2

√
2π

= 0

and ρn(h) ≤ h2 imply the claim.
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The above example suggests a more general result. AIC is naturally defined for the

limit model by AIC(α) = −2 log p(ξ|παξ) + 2kα, where πα is the projection to Hα with

respect to the metric J . BIC for the limit model is BIC(α) = −2 log p(ξ|0) if Hα = {0}
and BIC(α) = ∞ if Hα 6= {0}. Then, under some mild conditions, AIC and BIC for the

non-limit model converges to those for the limit model.

Theorem 4.14 (Local asymptotic minimax theorem for information criterion).

Let {pn(·|θ) | θ ∈ Θ} be a LAN model and s be an information criterion. Take ξn as [LA2]

in Chapter 3. Assume that θ̂α − (θ + παξn/
√

n) converges to 0 for each α ∈ A. Assume

also that the selected model α̂n(s) converges in distribution to α̂(s). Then

sup
I∈F (Rk)

lim inf
n→∞

sup
h∈I

rθ+h/
√

n(qs,n) ≥ sup
h∈Rk

rh(qs),

where F (Rk) denotes all finite subsets of Rk.

Proof. From the assumption, p(y|θ̂α)/p(y|θ) converges in distribution to p(η|παξ)/p(η|h).

Thus, for any subsequence, there exists a further subsequence such that qs,n(y|x)/p(y|θ)
converges to qs(η|ξ)/p(η|h). Then the proof is same as Theorem 3.22 if we replace qn and

q with qs,n and qs, respectively.

We define the regret RG of an information criterion s by

RGθ(qs,n) = rθ(qs,n)− rθ(qOPT,n),

where the distribution qOPT,n is the predictive distribution corresponding to the submodel

attaining the minimum loss, that is,

qOPT,n(y|x) =
∑
α∈A

I{α = argmin
α′

lθ(qα′,n(·|x))}qα,n(y|x). (4.19)

The qOPT,n depends on the true θ and provides the lower bound for risk of model selec-

tion. The above definition of the regret is slightly different from that defined by Shibata

(1986). He considered the difference rθ(qs,n)−rθ(qα0,n), where α0 is the minimal submodel

including the true density. His definition is well-defined only under a hypothesis that the

submodels are nested.

The local asymptotic minimax theorem for the regret holds. The proof is similar to

Theorem 4.14.

Theorem 4.15 (Local asymptotic minimax theorem for regret). Under the same

conditions as Theorem 4.14, we have

sup
I∈F (Rk)

lim inf
n→∞

sup
h∈I

RGθ+h/
√

n(qs,n) ≥ sup
h∈Rk

{
rh(qs)− lim sup

n→∞
rθ+h/

√
n(qOPT,n)

}
.
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If the set of random variables log pn(y|θ+h/
√

n)/qOPT,n(y|x) under Pθ+h/
√

n are uniformly

integrable in all n for each h, the right hand side is suph RGh(qs).
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Figure 4.1: The risk of AIC, BIC and OPT in Example 4.13. OPT is the lower bound

obtained by a model-selection procedure that selects the model attaining minimum loss

by using true θ.





Chapter 5

Estimation of fractal index

In this chapter, the asymptotic properties of the quasi maximum likelihood estimator

(QMLE) for the fractal index proposed by Stein (1995) are studied under the fixed do-

main asymptotics. The asymptotic variance is smaller than the estimators considered in

Chapter 2.

5.1 Introduction

Let us consider a stationary Gaussian-process {Xt ∈ R | t ∈ [0, 1]} with the constant

mean µ ∈ R and variogram

γ(t) =
1

2
E[(Xs+t −Xs)

2]. (5.1)

We assume that γ(t) varies regularly at 0 with exponent α ∈ (0, 2), that is,

lim
t→0

γ(tu)

γ(t)
= uα (5.2)

for each u > 0 (Feller, 1971, p.276). The parameter α is called the fractal index (Chap-

ter 2). Details of further assumptions on γ are given in the next section. Our goal is to

find a good estimator of α from the discrete observations {Xi/n | i = 0, 1, · · · , n}. The

other parameters contained in γ(·) are considered to be (infinite-dimensional) nuisance

parameters. As stated in Chapter 2, a number of estimators for α have been studied in

recent years.

We study the asymptotic property of the quasi maximum likelihood estimator (QMLE)

proposed by Stein (1995) under the fixed domain asymptotics (see Chapter 2). QMLE is

defined by (5.5) below. We first describe the background of the estimator. The increments

of Xi/n are denoted by xi =Xi/n−X(i−1)/n. Let x = {xi | i = 1, · · · , n}. By the assumption

35
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(5.2), the autocovariance of x satisfies

E[xi+hxi] = γ((h + 1)/n) + γ((h− 1)/n)− 2γ(h/n)

∼ γ(1/n){|h + 1|α + |h− 1|α − 2|h|α}

as n → ∞ for each fixed h. As remarked by Kent & Wood (1997), the process x is

approximated by the fractional Gaussian noise (FGN). FGN is defined by a discrete-

time stationary Gaussian process y = {yi | i = 1, · · · , n} with the covariance function

E[yi+hyi] = (A/2){|h+1|α+|h−1|α−2|h|α} with some A > 0. Statistical inference for FGN

was reviewed in Section 2.5. Since the normalized process γ(1/n)−1/2xi is approximated

by FGN, it is natural to use an estimator for FGN to estimate the parameter of the process

Xt. Although the normalization constant γ(1/n)−1/2 depends on α, it causes no problem

by considering γ(1/n) as a new nuisance parameter since the coordinates of the nuisance

parameter can be transformed by any function including the parameter of interest (Amari,

1985, Chapter 8).

We define QMLE analogous to that for FGN. The spectral density of FGN is denoted

by

f(λ|α) = 2As(α) sin2(λ/2)
∞∑

j=−∞
|λ + 2πj|−α−1, (5.3)

where s(α) = Γ(α+1) sin(απ/2)/π. The constant A is determined by, just for convenience,

∫ π

−π

log f(λ|α)dλ = 0. (5.4)

Let In(λ; x) = (2πn)−1|∑n
j=1 xje

−ijλ|2 be the periodogram of the increments xi. Then

QMLE is defined by

α̂n = argmin
α′

∫ π

−π

In(λ; x)

f(λ|α′) dλ. (5.5)

In practice, one uses
∑n−1

k=1 In(λk; x)/f(λk) instead of the integral in (5.5), where λk =

2πk/n. Stein showed that α̂n behaves well by numerical experiments. On the other hand,

if x is exactly FGN, the consistency and asymptotic normality hold due to Fox & Taqqu

(1986). We prove the consistency and asymptotic normality under mild conditions.

We assume that the true parameter α belongs to A := (1 + a, 2 − a) with some

known a > 0. Thus the solution of the optimization problem (5.5) is searched over

Ā = [1 + a, 2 − a]. Although this is an unrealistic assumption, we assume it from a

technical reason.
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This chapter is organized as follows. In Section 5.2 we describe the theorems about

the consistency and the asymptotic normality of QMLE. The regularity conditions are

also stated there. Numerical experiments are given in Section 5.3. Proofs are given in

Section 5.4. Lastly we give some discussions in Section 5.5.

5.2 Main results

5.2.1 Consistency and asymptotic normality

We first give a regularity condition [FS] that ensures the consistency and asymptotic

normality of α̂n (the letters “FS” denote the “fractal” and “spectrum”). Other conditions

on the variogram sufficient to prove the consistency and asymptotic normality are given

in Subsection 5.2.2. As stated in the introduction, we assume that the parameter space

is Ā = [1 + a, 2− a] with some known a > 0 and the true α belongs to its interior.

Assume that there exists the spectral density φ(x) of {Xt | t ∈ [0, 1]}, that is, the

autocovariance function of Xt is given by σ(t) =
∫∞
−∞ φ(x)eixtdx. The regularity condition

is stated as follows. The coefficient s(α) = Γ(α + 1) sin(απ/2)/π in (5.6) is just for the

sake of convenience.

[FS] The function φ is bounded over R, and there exist ν > 0 and β > 0 such that

φ(x) = νs(α)|x|−α−1 + O(|x|−α−β−1) (5.6)

as |x| → ∞. It is assumed that β ≤ 2− α without loss of generality.

We prepare some notations. Assume the condition [FS]. We consider the normalized

increments x̃i = (nαA/2ν)1/2xi, where A is the same as one in (5.3). The spectral density

fn(λ) for x̃i is expressed as

fn(λ) =
2A

ν
sin2(λ/2)

∞∑
j=−∞

n1+αφ(n(λ + 2πj)) (5.7)

(see Stein (1995)). We show that |fn(λ) − f(λ|α)| = O(n−β) for each λ 6= 0 in Subsec-

tion 5.4.1. The periodogram of x̃i is denoted by Ĩn(λ) = In(λ; x̃) = (nαA/2ν)In(λ; x).

QMLE α̂n is invariant under replacing In in (5.5) with Ĩn. The expectation of Ĩn(λ) is

given by

Sn[fn](λ) =
1

2πn

∫ π

−π

fn(λ′)
sin2(n(λ′ − λ)/2)

sin2((λ′ − λ)/2)
dλ′. (5.8)
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Let αn be the parameter corresponding to the spectral density closest to Sn[fn], that is,

αn = argmin
α′

∫ π

−π

Sn[fn](λ)

f(λ|α′) dλ. (5.9)

Let ∂α be the derivative with respect to α. The Fisher information for FGN is

J =
1

4π

∫ π

−π

(∂αf(λ|α))2

f(λ|α)2
dλ. (5.10)

Then the consistency and asymptotic normality is stated as follows.

Theorem 5.1 (consistency). Assume [FS]. Then α̂n
P→ α as n →∞.

Theorem 5.2 (asymptotic normality). Assume [FS]. Then

√
n(α̂n − αn) ; N(0, J−1) (5.11)

and

αn − α =
1

4πJ

∫ π

−π

(∂αf(λ|α))fn(λ)

f(λ|α)2
dλ + o(n−β) = O(n−β). (5.12)

Remark 5.3. If the number of observation is restricted to n = 2m, we can also prove the

strong consistency of α̂n under m →∞ by using the Borel-Cantelli lemma.

Remark 5.4. The asymptotic variance J−1 is optimal in the following sense: if xi is

exactly FGN, it is optimal due to Dahlhaus (1989). The order O(n−β) of αn is the same

as the other estimators discussed in Chapter 2. It is larger than the order of the stochastic

term α̂n − αn if β < 1/2.

Remark 5.5. QMLE α̂n and the quantity αn are interpreted as the orthogonal projection

of Ĩn and Sn[fn], respectively, to the FGN model in the space of all spectral densities

(Fig. 5.1).

5.2.2 Other conditions

Let us consider some regularity conditions not on the spectral density but on the vari-

ogram. Since γ(t) is an even function, the conditions are stated only for t ≥ 0. Let γ(k)(t)

denote the k-th derivative of γ(t) and α(k) = α(α− 1) · · · (α− k + 1).

We first give a set of conditions [F1]–[F4] that ensures the consistency.

[F1] There exists δ > 0 such that γ(t) is positive for t ∈ (0, δ).
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Figure 5.1: Geometrical interpretation of QMLE.

[F2] The function γ(t) has regular variation with exponent α:

lim
t↓0

γ(tu)

γ(t)
= uα (5.13)

for any u > 0.

[F3] The function γ(t) is continuously twice differentiable over t ∈ (0, 1].

[F4] For k = 1 and 2, it holds that

lim
t↓0

tkγ(k)(t)

γ(t)
= α(k). (5.14)

Theorem 5.6. Assume [F1]–[F4]. Then α̂n
P→ α as n →∞.

We next give a set of conditions [F5]–[F10] that implies [FS]. It is related to the

Tauberian theorem given by Pitman (1968). Here we assume that the domain of the

variogram function γ(t) can be extended to R, that is, there exists a non-negative definite

function γ̃(t) on t ∈ R such that γ̃(t) = γ(t) for t ∈ [−1, 1]. We denote the extended

function γ̃(t) by γ(t) for simplicity.

[F5] The function γ(t) is continuously three-times differentiable over (0,∞).

[F6] There exist ν > 0 and β ∈ (0, 2− α] such that

γ(k)(t) = να(k)t
α−k + O(tα+β−k) (5.15)

as t ↓ 0 for k = 0, 1 and 2.
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[F7] There exists γ(∞) = limt→∞ γ(t). Furthermore,
∫ ∞

0

|γ(∞)− γ(t)|dt < ∞. (5.16)

[F8] For k = 1 and 2,

lim
t→∞

γ(k)(t) = 0. (5.17)

[F9] For each δ > 0,
∫ ∞

δ

|γ(3)(t)|dt < ∞. (5.18)

[F10] There exists δ > 0 such that the function γ(2)(t) − να(2)t
α−2 is monotone over

t ∈ (0, δ).

Theorem 5.7. The conditions [F5]–[F10] imply [FS].

The following corollary is immediately obtained.

Corollary 5.8. The conditions [F5]–[F10] imply the consistency and asymptotic normality

of QMLE.

5.3 Numerical experiments

We first see how the spectral density fn converges to f . Let φ be

φ(x) = x−α−1
0 dx/x0e−α−1, x0 = 20, α = 1.5.

The graphs of the spectral densities fn (n = 100 and 1000) and f are shown in Fig. 5.2.

We next consider the following spectral densities.

φ1(x) = (1 + x2/α)−(α+1)/2,

φ2(x) = (b|x|c ∨ 1)−α−1,

φ3(x) = (2 + sin |x|)(1 + x2/α)−(α+1)/2.

The densities φ1 and φ2 satisfy [FS] but φ3 does not satisfy it. We remark that φ1 is called

the Matérn class and the second one is not continuous. We also consider the following

variogram functions.

γ1(t) = 1− exp(−|t|α),

γ2(t) = 1− exp(−|t|α)r(|t|),
γ3(t) =

|t|α − |t|2
log(1/|t|) ,
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Figure 5.2: Convergence of fn to f . The graphs of log fn(λ) (n = 100 and 1000) and

log f(λ|α) are shown. The fractal index is α = 1.5.

where

r(t) =

(
(1− t) sin(2πt)

2πt
+

1− cos(2πt)

2π2t

)
I(t≤1).

The functions γ1 and γ2 satisfy [F5]–[F10]. The function γ3 does not satisfy [F5]–[F10]

but satisfy [F1]–[F4]. We remark that γ1 is called the stable class and γ2 has the compact

support (Gneiting, 2002).

For the above six examples, we compare QMLE α̂QMLE with an increment-based es-

timator α̂
(1)
OLS in Kent & Wood (1997) because the latter one is considered as a good

estimator in early researches. The results are shown in Table 5.1, Table 5.2 and Ta-

ble 5.3. From Table 5.3, the order of bias and variance seems to be consistent with our

theoretical result: O(n−β) and O(n−1), respectively. From the three tables, α̂QMLE always

has smaller variance than α̂
(1)
OLS. It is consistent with our theoretical result. On the other

hand, the bias of α̂QMLE is sometimes larger than α̂
(1)
OLS.

We also compare the prediction error of the two estimators if we use the kriging method

(see e.g. Chilès & Delfiner (1999)). The method of the experiment is as follows. We

generate the sample {Xi/2n}2n
i=0 based on the true variogram γ(t). Assume that {Xi/n}n

i=0

is the observed data and {X(2i−1)/2n}n
i=1 is the unobserved data. Then the estimator α̂

is calculated from {Xi/n}n
i=0 and the predicted value X̂(2i−1)/2n is calculated based on the

kriging method. The prediction error is defined by n−1
∑n

i=1(X̂(2i−1)/2n −X(2i−1)/2n)2. A

result is shown in Table 5.4. From the table, the prediction error of QMLE is slightly less

than that of OLS.



42 CHAPTER 5. ESTIMATION OF FRACTAL INDEX

Table 5.1: Comparison of QMLE v.s. a increment-based estimator. The true variogram is

(a) γ(t) = 2− exp(−|t|α)− exp(−|t|1.9) and (b) γ(t) = 2− exp(−|t|α)− exp(−|t|1.99). The

nuisance parameter β is (a) β = 1.9 − α and (b) β = 1.99 − α, respectively. Number of

simulation is 5000 in each case. The numerical value of the inverse of Fisher information

J−1 is indicated in the last column.

(a) γ(t) = 2− exp(−|t|α)− exp(−|t|1.9).

α β n α̂QMLE α̂
(1)
OLS J−1

nβ×bias n×var. nβ×bias n×var.

1.2 0.7 1024 0.817 1.75 0.028 4.01 1.64

1.2 0.7 2048 0.816 1.67 0.088 3.98 1.64

1.2 0.7 4096 0.865 1.71 0.112 4.05 1.64

1.5 0.4 1024 0.308 1.96 0.105 4.25 1.74

1.5 0.4 2048 0.285 1.88 0.123 4.26 1.74

1.5 0.4 4096 0.279 1.81 0.138 4.26 1.74

(b) γ(t) = 2− exp(−|t|α)− exp(−|t|1.99).

α β n α̂QMLE α̂
(1)
OLS J−1

nβ×bias n×var. nβ×bias n×var.

1.2 0.79 1024 0.862 1.77 -0.301 4.00 1.64

1.2 0.79 2048 1.023 1.73 -0.092 4.07 1.64

1.2 0.79 4096 0.876 1.71 -0.122 4.07 1.64

1.8 0.19 1024 0.137 2.98 0.005 4.42 1.81

1.8 0.19 2048 0.105 2.76 0.010 4.26 1.81

1.8 0.19 4096 0.074 2.63 0.007 4.28 1.81

1.9 0.09 1024 0.093 2.20 0.007 4.29 1.82

1.9 0.09 2048 0.079 3.21 0.005 4.36 1.82

1.9 0.09 4096 0.061 3.87 0.009 4.24 1.82
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Table 5.2: Comparison of QMLE v.s. an increment-based estimator. Number of the

sampling points is n = 2048. The spectral density is (a) φ(x) = (1 + x2/α)−(α+1)/2,

(b) φ(x) = (b|x|c ∨ 1)−α−1 and (c) φ(x) = (2 + sin |x|)(1 + x2/α)−(α+1)/2. Number of

simulation is 1000 in each case. The numerical value of the inverse of Fisher information

J−1 is indicated in the last column.

(a) φ(x) = (1 + x2/α)−(α+1)/2.

α α̂QMLE α̂
(1)
OLS J−1

bias n×var. bias n×var.

0.1 0.1002 0.55 0.1042 1.13 0.26

0.4 0.0300 1.07 0.0303 2.20 0.92

0.7 0.0078 1.39 0.0083 3.03 1.31

1.0 -0.0004 1.52 -0.0004 3.67 1.54

1.3 -0.0029 1.60 -0.0013 4.16 1.68

1.6 -0.0032 1.80 -0.0034 4.22 1.77

1.9 -0.0013 2.01 -0.0015 4.41 1.82

(b) φ(x) = (b|x|c ∨ 1)−α−1.

α α̂QMLE α̂
(1)
OLS J−1

bias n×var. bias n×var.

0.1 0.0987 0.55 0.1039 1.16 0.26

0.4 0.0315 1.02 0.0326 2.14 0.92

0.7 0.0080 1.37 0.0055 3.05 1.31

1.0 0.0019 1.55 0.0023 3.83 1.54

1.3 -0.0021 1.87 -0.0018 3.93 1.68

1.6 -0.0022 1.82 -0.0028 4.20 1.77

1.9 -0.0013 1.93 -0.0043 4.46 1.82

(c) φ(x) = (2 + sin |x|)(1 + x2/α)−(α+1)/2.

α α̂QMLE α̂
(1)
OLS J−1

bias n×var. bias n×var.

0.1 0.0996 0.53 0.1043 1.123 0.26

0.4 0.0312 0.99 0.0317 2.148 0.92

0.7 0.0076 1.31 0.0067 3.046 1.31

1.0 0.0009 1.58 0.0030 3.625 1.54

1.3 -0.0011 1.83 -0.0008 4.061 1.68

1.6 -0.0038 1.82 -0.0026 4.165 1.77

1.9 -0.0053 1.73 -0.0046 4.165 1.82
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Table 5.3: Comparison of QMLE v.s. an increment-based estimator. Number of the

sampling points is n = 2048. The variogram is (a) γ(t) = 1 − exp(−|t|α), (b) γ(t) =

1− r(|t|) exp(−|t|α) and (c) γ(t) = (|t|α − |t|2)/ log(1/|t|). Number of simulation is 1000

in each case. The numerical value of the inverse of Fisher information J−1 is indicated in

the last column.

(a) γ(t) = 1− exp(−|t|α).

α α̂QMLE α̂
(1)
OLS J−1

bias n×var. bias n×var.

0.1 -0.0193 0.34 -0.0235 0.58 0.26

0.4 -0.0167 0.95 -0.0134 1.95 0.92

0.7 -0.0052 1.32 -0.0029 2.78 1.31

1.0 0.0002 1.66 0.0007 3.60 1.54

1.3 0.0012 1.84 -0.0001 4.35 1.68

1.6 0.0046 1.74 -0.0002 4.21 1.77

1.9 0.0235 2.79 -0.0010 4.10 1.82

(b) γ(t) = 1− r(|t|) exp(−|t|α).

α α̂QMLE α̂
(1)
OLS J−1

bias n×var. bias n×var.

0.1 -0.0168 0.32 -0.0241 0.59 0.26

0.4 -0.0126 0.88 -0.0145 1.92 0.92

0.7 0.0017 1.36 -0.0032 3.17 1.31

1.0 0.0104 1.72 -0.0006 3.75 1.54

1.3 0.0241 2.09 -0.0022 4.31 1.68

1.6 0.0554 2.82 0.0040 3.91 1.77

1.9 0.0980 0.06 0.0564 4.43 1.82

(c) γ(t) = (|t|α − |t|2)/ log(1/|t|).

α α̂QMLE α̂
(1)
OLS J−1

bias n×var. bias n×var.

0.1 0.1716 0.68 0.1480 1.40 0.26

0.4 0.1593 1.32 0.1430 2.56 0.91

0.7 0.1525 1.50 0.1414 3.28 1.31

1.0 0.1387 1.65 0.1320 3.78 1.54

1.3 0.1220 1.83 0.1161 4.38 1.68

1.6 0.0915 1.94 0.0876 4.44 1.77

1.9 0.0327 1.77 0.0266 4.13 1.82
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Table 5.4: The prediction error of each estimators. The true variogram is assumed to

be γ(t) = 1 − exp(−|t|α). The number of sampling points is n = 32 and the number of

simulation is 1000. The last column corresponds to the result of kriging when the true

parameter is used.

α QMLE OLS true

1.0 0.0162 0.0168 0.0155

1.3 3.54e-3 3.61e-3 3.43e-3

1.6 6.09e-4 6.12e-4 6.04e-4

1.9 4.49e-5 4.49e-5 4.47e-5

5.4 Proofs

5.4.1 Preliminary lemmas

We give the behavior of fn(λ) and Sn[fn](λ). Recall that Sn is defined by Sn[g](λ) =∫ π

−π
g(λ′)Kn(λ′ − λ)dλ′ with the kernel function Kn(t) = (2πn)−1 sin2(nt

2
)/ sin2( t

2
). The

relations that Kn(t) ≤ n−1(n2 ∧ |t|−2) and
∫ π

−π
Kn(t)dt = 1 are useful. We abbreviate

f(λ|α) to f(λ).

Lemma 5.9. Assume [FS]. There exists C > 0 such that, for any n ≥ 1,

|fn(λ)− f(λ)| ≤ Cn−β|λ|−α−β+1 for |λ| ∈ [n−1, π], (5.19)

fn(λ) ≤ C(nα−1 ∧ |λ|−α+1) for |λ| ∈ (0, π], (5.20)

|Sn[fn](λ)− fn(λ)| ≤ Cn−β|λ|−α−β+1 for |λ| ∈ [n−1, π], (5.21)

Sn[fn](λ) ≤ C(nα−1 ∧ |λ|−α+1) for |λ| ∈ (0, π]. (5.22)

Proof. In the proof, the constant C independent of λ and n is changed step-by-step.

Proof of (5.19). The assumption [FS] implies that, for any |x| ≥ 1,

∣∣φ(x)− νs(α)|x|−α−1
∣∣ ≤ C|x|−α−β−1.

Thus, for any |λ| ∈ [n−1, π],

|fn(λ)− f(λ)| =

∣∣∣∣∣2As(α) sin2(λ/2)
∞∑

j=−∞

(
nα+1φ(n(λ + 2πj))

νs(α)
− |λ + 2πj|−α−1

)∣∣∣∣∣

≤ C|λ|2
∞∑

j=−∞
n−β|λ + 2πj|−α−β−1

≤ Cn−β|λ|−α−β+1,



46 CHAPTER 5. ESTIMATION OF FRACTAL INDEX

where a formula
∑

j 6=0 |λ + 2πj|−α−β+1 ≤ C is used.

Proof of (5.20). The condition [FS] implies that, for λ ∈ (0, n−1],

fn(λ) =
2A

ν
sin2(λ/2)

∞∑
j=−∞

nα+1φ(n(λ + 2πj)) ≤ C sin2(λ/2)nα+1 ≤ Cnα−1.

On the other hand, (5.19) and Proposition 2.7 imply fn(λ) ≤ Cλ−α+1 for λ ∈ [n−1, π].

Proof of (5.21). Let λ ∈ [n−1, π]. Let dn = |fn(λ′) − fn(λ)| and kn = Kn(λ′ − λ). It is

sufficient to evaluate
∫ π

0
dnkndλ′. Let us partition [0, π] into ∪5

i=1Ai, where

A1 = [0, (2n)−1], A2 = [(2n)−1, λ/2], A3 = [λ/2, λ− (2n)−1] ∪ [λ + (2n)−1, 3λ/2],

A4 = [λ− (2n)−1, λ + (2n)−1], A5 = [3λ/2, π].

If λ′ ∈ A1, then dn ≤ Cnα−1 and kn ≤ Cn−1|λ|−2. We have

∫

A1

dnkndλ′ ≤ C

∫ (2n)−1

0

nα−2λ−2dλ′ ≤ Cnα−3λ−2 ≤ Cn−βλ−α−β+1.

If λ′ ∈ A2, then dn ≤ Cn−β|λ′|−α−β+1 and kn ≤ Cn−1|λ|−2. Let r = 1 if β < 2 − α and

r = log(nλ) if β = 2− α. Then we have

∫

A2

dnkndλ′ ≤ C

∫ λ/2

(2n)−1

n−β−1|λ′|−α−β+1λ−2dλ′ ≤ Cnα−3rλ−2 ≤ Cn−βλ−α−β+1.

If λ′ ∈ A3, then dn ≤ Cn−βλ−α−β+1 and kn ≤ Cn−1|λ′ − λ|−2. We have

∫

A3

dnkndλ′ ≤ C

∫ λ−(2n)−1

λ/2

n−β−1λ−α−β+1|λ′ − λ|−2dλ′ ≤ Cn−βλ−α−β+1.

If λ′ ∈ A4, then

dn ≤ |fn(λ′)− f(λ′)|+ |f(λ′)− f(λ)|+ |f(λ)− fn(λ)| ≤ Cn−βλ−α−β+1,

where (5.19) and Proposition 2.7 are used. Since kn ≤ n, we have

∫

A4

dnkndλ′ ≤ Cn−βλ−α−β+1.

Lastly, if λ′ ∈ A5, then dn ≤ Cn−β|λ′|−α−β+1 and kn ≤ Cn−1|λ′|−2. We have

∫

A5

dnkndλ′ ≤ C

∫ π

3λ/2

n−β−1|λ′|−α−β−1dλ′ ≤ Cn−β−1λ−α−β ≤ Cn−βλ−α−β−1.

Proof of (5.22). The inequality (5.20) implies Sn[fn](λ) ≤ Cnα−1
∫ π

−π
Kn(t)dt = Cnα−1.

On the other hand, if λ ∈ [n−1, π], (5.20) and (5.21) imply Sn[fn](λ) ≤ Cλ−α+1.
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Remark 5.10. Although the relation (5.21) is also derived by Proposition 1 of Stein

(1995), our proof is different because he assumed differentiability of φ. Instead of differ-

entiability, we assume detailed tail behavior of φ as [FS].

As a corollary of Lemma 5.9, we obtain the following lemma.

Lemma 5.11. Assume [FS]. For each 0 < t ≤ π,

sup
t≤|λ|≤π

|fn(λ)− f(λ)| = O(n−β),

sup
t≤|λ|≤π

|Sn[fn](λ)− fn(λ)| = O(n−β).

The following lemma is used to prove Theorem 5.2. The proof is similar to Theorem

(3.15) in Zygmund (2002).

Lemma 5.12. Let α ∈ (1, 2). Let g be an even function on [−π, π]. Assume that g is

continuously differentiable for λ 6= 0 and |dig/dλi| ≤ |λ|α−1−i for i = 0 and 1. Then there

exists C > 0 such that

|Sn[g](λ)− g(λ)| ≤ C|λ|α−2n−1 log n (5.23)

Proof. The constant C is changed step-by-step. Let λ > 0. We evaluate
∫ π

0
andλ′, where

an = |g(λ′)− g(λ)|Kn(λ′ − λ). If λ ∈ [n−1, π], then

∫ λ/2

0

andλ′ ≤ C

∫ λ/2

0

λα−1n−1|λ′ − λ|−2dλ′ ≤ Cλα−2n−1,

(∫ λ−n−1

λ/2

+

∫ π

λ+n−1

)
andλ′ ≤ C

∫ π

λ+n−1

λα−2n−1|λ′ − λ|−1dλ′ ≤ Cλα−2n−1 log n,

∫ λ+n−1

λ−n−1

andλ′ ≤ C

∫ λ+n−1

λ−n−1

λα−2|λ′ − λ|ndλ′ ≤ Cλα−2n−1.

If λ ∈ (0, n−1], then

∫ λ+n−1

0

andλ′ ≤ C

∫ 2n−1

0

n−α+1ndλ′ ≤ Cn−α+1 ≤ Cλα−2n−1,

∫ π

λ+n−1

andλ′ ≤ C

∫ π

λ+n−1

λα−2n−1|λ′ − λ|−1dλ′ ≤ Cλα−2n−1 log n.

Thus the result follows.
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5.4.2 Proof of Theorem 5.1

The outline of the proof of Theorem 5.1 is in line with Fox & Taqqu (1986). Note that

x̃i, Ĩn, fn and Sn are defined in Subsection 5.2.1.

Let

c̄n(h) =
1

n

n−|h|∑
i=1

x̃i+|h|x̃i =

∫ π

−π

Ĩn(λ)eihλdλ (5.24)

and

c(h) =
A

2
{|h + 1|α + |h− 1|α − 2|h|α} =

∫ π

−π

f(λ)eihλdλ. (5.25)

Lemma 5.13. Assume [FS]. For any fixed h, c̄n(h)
P→ c(h) as n →∞.

Proof. It is sufficient to prove that E[c̄n(h)] → c(h) and Var[c̄n(h)] → 0. Since

E[c̄n(u)] =

∫ π

−π

Sn[fn](λ)eiuλdλ and c(u) =

∫ π

−π

f(λ)eiuλdλ,

Lemma 5.9 implies that

sup
|u|≤n−1

|E[c̄n(u)]− c(u)| ≤
∫ π

−π

|Sn[fn](λ)− f(λ)|dλ

= O

[∫ n−1

0

(nα−1+λ−α+1)dλ +

∫ π

n−1

n−βλ−α−β+1dλ

]

= O(n−β′)

for any 0 < β′ < β. Let σn(u) = E[x̃i+|u|x̃i]. Then

sup
|u|≤n−1

∣∣∣∣
n− |u|

n
σn(u)− c(u)

∣∣∣∣ = O(n−β′)

Fix h ≥ 0 and let n′ = n− h. Since xi’s are Gaussian and c(u) = O(uα−2), we obtain

Var[c̄n(h)] =
1

n2

n′−1∑

u=−n′+1

(n′ − |u|) [
σn(u)2 + σn(u + h)σn(u− h)

]

≤ 3

n2

n−1∑
u=−n+1

(n− |u|)σn(u)2

= 3
n−1∑

u=−n+1

c(u)2

n− |u| + O

[
n−β′

n−1∑
u=−n+1

1

n− |u|

]

= O

[
n−1∑
u=1

u2α−4

n− u

]
+ O

[
n−β′ log n

]
.
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Fix a number p > (4− 2α)−1 ∨ 1. Then Hölder’s inequality implies that

n−1∑
u=1

u2α−4

n− u
= O

[
n−1∑
u=1

up(2α−4)

]1/p

= O(n2α−4+(1/p)) = o(1).

Thus Var[c̄n(h)] = o(1)

Lemma 5.14. Assume [FS]. Let ϕ be any continuous function on [−π, π]× Ā. Then

∫ π

−π

Ĩn(λ)ϕ(λ, α′)dλ
P→

∫ π

−π

f(λ)ϕ(λ, α′)dλ (5.26)

uniformly in α′ ∈ Ā.

Proof. The outline of this proof is due to Fox & Taqqu (1986). Define c̄n(h) and c(h) as

(5.24) and (5.25). Lemma 5.13 implies

∫ π

−π

Ĩn(λ)eihλdλ = c̄n(h)
P→ c(h) =

∫ π

−π

f(λ)eihλdλ. (5.27)

Let ϕm be the m-th Cesàro sum of ϕ:

ϕm(λ, α′) =
m∑

h=−m

(1− |h|/m)ph(α
′)eihλ. (5.28)

The h-th Fourier coefficient ph(α
′) = (2π)−1

∫ π

−π
ϕ(λ, α)e−ihλdλ is continuous with respect

to α′. We usually abbreviate the arguments α, α′ and λ of any function below. For any

ε > 0, there exists a positive integer m such that supλ,α′ |ϕ− ϕm| < ε/2c(0). Thus

sup
α′

∣∣∣∣
∫ π

−π

(Ĩn − f)(ϕ− ϕm)dλ

∣∣∣∣ ≤
ε

2c(0)

∫ π

−π

(Ĩn + f)dλ =
ε(c̄n(0) + c(0))

2c(0)

P→ ε.

On the other hand, | ∫ π

−π
(Ĩn − f)ϕmdλ| P→ 0 uniformly in α′ by (5.27) and (5.28). Thus

the lemma follows.

Proof of Theorem 5.1. The function {f(λ|α′)}−1 is continuous on [−π, π] × Ā (see

Section 2.5). Thus Lemma 5.14 implies

∫ π

−π

Ĩn(λ)

f(λ|α′)dλ
P→

∫ π

−π

f(λ|α)

f(λ|α′)dλ (5.29)

uniformly in α′ ∈ Ā. The right hand side of this expression has the unique minimum at

α′ = α. The theorem follows from Theorem 5.7 in van der Vaart (1998).
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5.4.3 Proof of Theorem 5.2

The outline of the proof of Theorem 5.2 is in line with Fox & Taqqu (1986). Note that

x̃i, Ĩn, fn and Sn are defined in Subsection 5.2.1.

Let g and gn be continuous functions defined on [−π, π] \ {0} with the following

properties: |g(λ)| = O(|λ|α−1−δ) and |gn(λ)| = O(|λ|α−1−δ) as λ → 0 for any δ > 0; for

any 0 < t ≤ π, there exists C = C(t) > 0 such that supt≤|λ|≤π |gn(λ) − g(λ)| ≤ Cn−β.

We show the asymptotic normality of
∫ π

−π
Ĩn(λ)gn(λ)dλ by using the idea of Fox & Taqqu

(1987). We shall take gn(λ) = ∂αf−1(λ|αn) later. We prepare some additional notations.

Most of the notations are the same as those in Fox & Taqqu (1987). The argument α

of a function is usually abbreviated as f(λ) = f(λ|α). Fix a positive integer p. Let

Ut = [−t, t]2p for each t ∈ (0, π]. For y = (y1, · · · , z2p) ∈ Uπ, we put

Pn(y) =
n−1∑
j1=0

· · ·
n−1∑

j2p=0

ei(j1−j2)y1ei(j2−j3)y2 · · · ei(j2p−j1)y2p ,

Qn(y) = fn(y1)gn(y2)fn(y3) · · · gn(y2p),

Q(y) = f(y1)g(y2)f(y3) · · · g(y2p).

Let

rjk =

∫ π

−π

fn(λ)ei(j−k)λdλ,

ajk =

∫ π

−π

gn(λ)ei(j−k)λdλ.

Let Rn and An be the matrix whose (j, k) component is rjk and ajk, respectively. Then

tr(RnAn)p =
∫

Uπ
PnQndy. Let µ be the measure on Uπ which is concentrated on D =

{y ∈ Uπ|y1 = . . . = y2p} and satisfies µ{y|a ≤ y1 = . . . = y2p ≤ b} = b − a for all

−π ≤ a ≤ b ≤ π. Introduce the sets Wk = {y ∈ R2p | |yk| ≤ |yk+1|/2} for k = 1, · · · , 2p,

where we interpret y2p+1 = y1, and W = W1 ∪ W2 ∪ · · · ∪ W2p. For each t ∈ (0, π], we

define three sets Et, Ft and G by Et = Uπ \ (W ∪ Ut), Ft = Ut \W and G = Uπ ∩W .

Lemma 5.15. Assume [FS]. For any 0 < t ≤ 1,

sup
y∈Et

|Qn(y)−Q(y)| = O(n−β).

Proof. Let y ∈ Et. Then yj > t/22p−1 for j = 1, · · · , 2p (Fox & Taqqu, 1987, p.237). Let

Λ = {1, 2, · · · , 2p}. Put F
(i)
n = fn if i is odd and gn if i is even. Similarly, put F (i) = f if

i is odd and g if i is even. It holds that

Qn −Q =
∏
i∈Λ

F (i)
n (yi)−

∏
i∈Λ

F (i)(yi) =
∑

∅(S⊂Λ

∏
i∈S

(F (i)
n (yi)− F (i)(yi))

∏

j /∈S

F (i)(yj).

The result follows from Lemma 5.11 and the assumption on gn.
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Lemma 5.16.

n−1

∫

Uπ

|Pn(y)|dy, = O((log n)2p−1). (5.30)

Proof. We have

Pn(y) =
sin(n(y1 − y2p)/2)

sin((y1 − y2p)/2)

sin(n(y2 − y1)/2)

sin((y2 − y1)/2)
· · · sin(n(y2p − y2p−1)/2)

sin((y2p − y2p−1)/2)
.

By putting u1 = y2 − y1, · · · , u2p−1 = y2p − y2p−1,

|Pn(y)| =

∣∣∣∣
sin(n(u1 + · · ·+ u2p−1)/2)

sin((u1 + · · ·+ u2p−1)/2)

sin(nu1/2)

sin(u1/2)
· · · sin(nu2p−1/2)

sin(u2p−1/2)

∣∣∣∣
≤ hn(u1 + · · ·+ u2p−1)hn(u1) · · ·hn(u2p−1),

where hn(x) is a 2π-periodic function with hn(x) = 4(n∧ |x|−1) for x ∈ [−π, π]. Then we

obtain

n−1

∫

Uπ

|Pn(y)|dy ≤ 2πn−1

∫

[−2π,2π]2p−1

hn(u1 + · · ·+ u2p−1)hn(u1) · · ·hn(u2p−1)du

≤ 2π

[∫ 2π

−2π

hn(u)du

]2p−1

= (2π)162p−1(1 + log(n/π))2p−1,

where a formula
∫ π

−π
hn(x)dx = 8(1 + log(n/π)) is used.

The following lemma and proposition are generalization of Theorem 1 and Theorem

2 in Fox & Taqqu (1987), respectively. Their results correspond to the case that fn = f

and gn = g for all n.

Lemma 5.17. Assume [FS]. Then

lim
n→∞

n−1tr(RnAn)p = (2π)2p−1

∫ π

−π

[f(λ)g(λ)]pdλ. (5.31)

Proof. The left hand side of (5.31) is equal to limn n−1
∫

Uπ
PnQndy. It is sufficient to show

that

lim
n→∞

n−1

∫

Et

PnQndy = (2π)2p−1

∫

t≤|λ|≤π

[f(λ)g(λ)]pdλ, 0 < t ≤ 1, (5.32)

lim
t→0

lim sup
n→∞

n−1

∫

Ft

PnQndy = 0, (5.33)

and

lim
n→∞

n−1

∫

G

PnQndy = 0. (5.34)
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Lemma 5.15 and 5.16 imply

∣∣∣∣n−1

∫

Et

Pn(Qn −Q)dy

∣∣∣∣ = O(n−β(log n)2p−1) = o(1).

Therefore (5.32) is shown if we prove that

lim
n→∞

n−1

∫

Et

PnQdy = (2π)2p−1

∫

t≤|λ|≤π

[f(λ)g(λ)]pdλ.

This equality is exactly shown in the proof of Theorem 1 in Fox & Taqqu (1987). Next,

for any fixed δ > 0, Lemma 5.9 implies

|Qn(y)| ≤ Rδ(y) := C|y1|−α+1−δ|y2|α−1−δ|y3|−α+1−δ · · · |y2p|α−1−δ

with some C > 0. Therefore (5.33) and (5.34) are shown if we prove the following two

relations for some δ > 0:

lim
t→0

lim sup
n→∞

n−1

∫

Ft

|Pn|Rδdy = 0

and

lim
n→∞

n−1

∫

G

|Pn|Rδdy = 0.

The above two formulas are proved in the proof of Theorem 1 in Fox & Taqqu (1987).

Therefore we obtain (5.32), (5.33) and (5.34).

Proposition 5.18. Assume [FS]. Let Zn =
∫ π

−π
gn(λ)Ĩn(λ)dλ. Then n1/2(Zn − E[Zn])

converges in distribution to N(0, V ), where

V = 4π

∫ π

−π

[f(λ)g(λ)]2dλ.

Proof. The p-th order cumulant of n1/2Zn is cp,n = 2−1(p−1)!π−pn−p/2tr(RnAn)p. Lemma 5.17

implies limn cp,n = 0 for p ≥ 3 and limn c2,n = 4π
∫

(fg)2dλ for p = 2.

Now we give the proof of Theorem 5.2.

Proof of Theorem 5.2. Put fα′ = f(λ|α′) and ∂ = ∂α′ = ∂/∂α′. Theorem 5.1 implies

α̂n
P→ α. We have αn → α. In fact, by Lemma 5.9, the objective function

∫ π

−π
Sn[fn]/fα′dλ

converges to
∫ π

−π
fα/fα′dλ uniformly in α′ ∈ Ā and the limit has the unique minimum at

α′ = α. By Taylor’s formula, there exists α̂∗n between α̂n and αn such that

0 =

∫ π

−π

(∂f−1
α̂n

)Ĩndλ =

∫ π

−π

(∂f−1
αn

)Ĩndλ + (α̂n − αn)

∫ π

−π

(∂2f−1
α̂∗n

)Ĩndλ.
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By using Lemma 5.14, we obtain
∫ π

−π

(∂2f−1
α̂∗n

)Ĩndλ
P→

∫ π

−π

(∂2f−1
α )fαdλ =

∫ π

−π

(∂fα/fα)2dλ = 4πJ.

By Proposition 5.18, we obtain

√
n

(∫ π

−π

(∂f−1
αn

)Ĩndλ− E

[∫ π

−π

(∂f−1
αn

)Ĩndλ

])
; N(0, 16π2J).

By the definition of αn, we obtain

E

[∫ π

−π

(∂f−1
αn

)Ĩndλ

]
=

∫ π

−π

(∂f−1
αn

)Sn[fn]dλ = 0.

Thus
√

n(α̂n − αn) ; N(0, J−1) is proved. We next evaluate αn. By Taylor’s formula,

there exists α∗n between αn and α such that

0 =

∫ π

−π

(∂f−1
αn

)Sn[fn]dλ =

∫ π

−π

(∂f−1
α )Sn[fn]dλ + (αn − α)

∫ π

−π

(∂2f−1
α∗n )Sn[fn]dλ.

Since
∫ π

−π
(∂2f−1

α∗n )Sn[fn]dλ
P→ 4πJ and

∫ π

−π

(∂f−1
α )Sn[fn]dλ =

∫ π

−π

(∂f−1
α )(Sn[fn]− fα)dλ = O(n−β),

we obtain

αn − α =
1

4πJ

∫ π

−π

∂fαSn[fn]

f 2
α

dλ + o(n−β) = O(n−β).

Lastly, we have
∫ π

−π

∂f−1
α (Sn[fn]− fn)dλ = o(n−β)

because the left hand side is equal to
∫ π

−π
{Sn[∂f−1

α ]− ∂f−1
α }fndλ and it is O(n−1(log n)2)

due to Lemma 5.9 and Lemma 5.12. Thus the theorem is proved.

5.4.4 Proof of Theorem 5.6

Let

σn(h) =
A

2γ( 1
n
)
E[xi+hxi] =

A

2γ( 1
n
)
{γ(h+1

n
) + γ(h−1

n
)− 2γ(h

n
)}

and

c(h) =
A

2
{|h + 1|α + |h− 1|α − 2|h|α}.

Lemma 5.19. Assume [F1]–[F4]. Then sup|h|≤n−1 |σn(h)− c(h)| = o(1) as n →∞.
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We prepare two lemmas before proving Lemma 5.19. They are shown in Bingham

et al. (1987).

Lemma 5.20 (Uniform convergence theorem). Assume [F1] and [F2]. Let 0 < u <

u. Then

lim
t↓0

sup
u∈[u,u]

∣∣∣∣
γ(tu)

γ(t)
− uα

∣∣∣∣ = 0.

Lemma 5.21 (Potter’s theorem). Assume [F1] and [F2]. For any β > 0, there exists

δ > 0 such that γ(t)/γ(u) ≤ (t/u)α+β for any 0 < u ≤ t ≤ δ.

Proof of Lemma 5.19. Let gn(x) = γ(x
n
)/γ( 1

n
)− |x|α. Then

σn(h)− c(h) =
A

2
{gn(h + 1) + gn(h− 1)− 2gn(h)} .

The condition [F2] implies that gn(h) = o(1) for fixed h. Thus it is sufficient to prove

that suph∈[2,n−1] |gn(h + 1) + gn(h− 1)− 2gn(h)| = o(1). By the mean-value theorem,

gn(h + 1) + gn(h− 1)− 2gn(h) =

∫ 1

0

∫ 1

0

g(2)
n (h + u− v)dudv.

The expression of g
(2)
n (x) is

g(2)
n (x) =

γ(2)(x
n
)

n2γ( 1
n
)
− α(2)x

α−2.

Fix ε > 0. It is sufficient to prove that lim supn→∞ supx∈[1,n] |g(2)
n (x)| ≤ ε. We partition the

interval [1, n] into [1, x0], [x0, nδ] and [nδ, n], where x0 and δ are fixed numbers defined as

follows. There exists a number x0 such that x0 ≥ 1 and 3α(2)x
α/2−1
0 ≤ ε. By the condition

[F4] and Lemma 5.21, there exists δ > 0 such that supt∈(0,δ] |t2γ(2)(t)/γ(t)| ≤ 2α(2) and

γ(t)/γ(u) ≤ (t/u)α/2+1 for any 0 < u ≤ t ≤ δ. Now we evaluate sup |g(2)
n (x)| for the three

intervals [1, x0], [x0, nδ] and [nδ, n]. From the condition [F4] and Lemma 5.20,

sup
x∈[1,x0]

|g(2)
n (x)| = sup

x∈[1,x0]

∣∣∣∣∣
(x

n
)2γ(2)(x

n
)

γ(x
n
)

γ(x
n
)

γ( 1
n
)
x−2 − α(2)x

α−2

∣∣∣∣∣ = o(1).

By the definition of δ and x0,

sup
x∈[x0,nδ]

|g(2)
n (x)| = sup

x∈[x0,nδ]

∣∣∣∣∣
(x

n
)2γ(2)(x

n
)

γ(x
n
)

γ(x
n
)

γ( 1
n
)xα/2+1

xα/2−1 − α(2)x
α−2

∣∣∣∣∣

≤ sup
x∈[x0,nδ]

∣∣∣∣∣
(x

n
)2γ(2)(x

n
)

γ(x
n
)

∣∣∣∣∣
∣∣∣∣

γ(x
n
)

γ( 1
n
)xα/2+1

∣∣∣∣ x
α/2−1
0 + α(2)x

α−2
0

≤ 2α(2)x
α/2−1
0 + α(2)x

α−2
0 ≤ 3α(2)x

α/2−1
0 ≤ ε.
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By the condition [F3], G0 := supt∈[δ,1] |γ(2)(t)| < ∞. Thus we obtain

sup
x∈[nδ,n]

|g(2)
n (x)| ≤ G0

n2γ( 1
n
)

+ α(α− 1)(nδ)α−2 = o(1).

Therefore we obtain lim supn→∞ supx∈[1,n] |g(2)
n (x)| ≤ ε.

Proof of Theorem 5.6. Define x̃i = (A/2γ(n−1))1/2xi, c̄n(h) = n−1
∑n−|h|

i=1 x̃i+|h|x̃i and

Ĩn(λ) = In(λ; x̃). The proofs of Lemma 5.14 and Theorem 5.1 remains valid if one shows

that c̄n(h)
P→ c(h) as n →∞ for any fixed h. By Lemma 5.19, we obtain

E[c̄n(h)] = (1− |h|/n)σn(h) → c(h),

Var[c̄n(h)] = n−2

n−h−1∑

u=−n+h+1

(n− h− |u|)(σn(u)2 + σn(u + h)σn(u− h))

= O

[
n−1

n∑
u=1

c(u)2

]
+ o(1) = o(1),

where c(u) = O(uα−2) is used for the last equality. Thus c̄n(h)
P→ c(h).

5.4.5 Proof of Theorem 5.7

Proof of Theorem 5.7. Assume [F5]–[F10]. The boundedness of φ(x), and also continuity,

follows from the condition [F7] because the autocovariance function is given by σ(t) =

γ(∞) − γ(t). We prove (5.6). Let ρ(2)(t) = γ(2)(t) − α(2)ν|t|α−2. By the condition [F10],

we have δ > 0 such that ρ(2)(t) is monotone over t ∈ (0, δ). Let x > 0. By [F5]–[F8] and

integration by parts, we obtain

πφ(x) =

∫ ∞

0

(γ(∞)− γ(t)) cos(tx)dt

= x−1

∫ ∞

0

γ(1)(t) sin(tx)dt

= x−2

∫ ∞

0

γ(2)(t) cos(tx)dt

= x−2

∫ ∞

0

να(2)t
α−2 cos(tx)dt + x−2

∫ ∞

0

ρ(2)(t) cos(tx)dt

= I1 + I2.

Then

I1 = να(2)x
−α−1

∫ ∞

0

uα−2 cos(u)du = πνs(α)x−α−1.
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We show I2 = O(x−α−β−1). The integral I2 is decomposed into three parts as follows.

I2 = x−2

∫ 1/x

0

ρ(2)(t) cos(tx)dt + x−2

∫ δ

1/x

ρ(2)(t) cos(tx)dt + x−2

∫ ∞

δ

ρ(2)(t) cos(tx)dt

= J1 + J2 + J3.

The condition [F6] implies ρ(2)(t) = O(tα+β−2) as t → 0, and therefore

J1 = x−2

∫ 1/x

0

ρ(2)(t) cos(tx)dtx = O

(
x−2

∫ 1/x

0

tα+β−2dt

)
= O(x−α−β−1).

By the definition of δ and the second mean-value theorem, there exists δ′ ∈ (1/x, δ) such

that

J2 = x−2

∫ δ

1/x

ρ(2)(t) cos(tx)dtx

= x−2

[
ρ(2)(1/x)

∫ δ′

1/x

cos(tx)dtx− ρ(2)(δ)

∫ δ

δ′
cos(tx)dtx

]

= x−3
[
ρ(2)(1/x)(sin(δ′x)− sin(1))− ρ(2)(δ)(sin(δx)− sin(δ′x))

]

= O(x−α−β−1) + O(x−3).

Finally, integration by parts and the condition [F9] imply

J3 = x−2

∫ ∞

δ

ρ(2)(t) cos(tx)dtx

=
[
x−3ρ(2)(t) sin(tx)

]∞
δ
− x−3

∫ ∞

δ

ρ(3)(t) sin(tx)dt

= O(x−3).

Therefore I2 = J1 + J2 + J3 = O(x−α−β−1) + O(x−3) = O(x−α−β−1) as x →∞.

5.5 Discussions

We proved that QMLE α̂n has the consistency and asymptotic normality. To determine

the efficiency of estimators is not easy because we consider the semiparametric model.

The asymptotic variance of QMLE is optimal because it is same as the inverse of Fisher

information matrix of FGN and the semiparametric model includes FGN. The bias is of

O(n−β) that is same as the other estimators discussed in Chapter 2.

We assumed that Xt is stationary throughout this chapter. However, the essential

condition is a weaker condition that Xt is an intrinsic random field (Chapter 2). In fact,

Theorem 5.6 holds also under the weaker assumption. To prove the other theorems under

the weaker condition is a future work. To study the multi-fractal index (i.e. spatially

varying fractal index) and non-lattice sampling schemes is also a challenging problem.



Chapter 6

Transformed Gaussian model

The contents of this chapter are reported in Sei (2004).

6.1 Introduction

In this chapter, we prove the local asymptotic mixed normality (LAMN; see Chapter 3)

of a class of transformed Gaussian models for random fields with time-parameter space

[0, 1]d with discrete observations, where d is a positive integer.

The transformed Gaussian model for random fields is an important model for processes

with non-Gaussian marginal distributions. Several geostatistical methods including trans-

Gaussian kriging (see e.g. Cressie (1993)) assume it. The transformed model was initiated

by Box & Cox (1964), who applied it to factorial experiments. A Bayesian prediction

procedure for the transformed Gaussian models was treated by De Oliveira et al. (1997).

We suppose that the process is observed at discrete lattice points in a unit cube and in-

vestigate fixed domain asymptotics, which means that the observed points increase densely

in a fixed domain as described in Section 2.2. Chan & Wood (2004) studied increment-

based estimators of the fractal dimension of transformed Gaussian models under the

framework of fixed domain asymptotics. They showed that the normalized difference

between the estimator and the true parameter converges to a mixed normal random vari-

able. Their setting is close to ours. However, their interest is semiparametric inference

and they did not give any likelihood-based results. Synthesis of their result and our result

is a future work.

The original Gaussian random field of our transformed Gaussian models is assumed

to be the product of a deterministic process and a process with independent increments.

A stationary random field called the Ornstein-Uhlenbeck sheet is included in our setting

as explained in Section 6.4. We also assume that the original Gaussian process is known
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and that only the transformation function is unknown. Estimation of the transformation

function is important when the marginal distribution is of interest.

The LAMN property implies the convergence of the likelihood ratio to that of the

corresponding mixed normal model (van der Vaart, 1998, Theorem 9.8). Therefore it

allows us to reduce statistical problems to those of the mixed normal model asymptotically.

We gave the related facts in Chapter 3.

Our result is a generalization of 1-dimensional case by Dohnal (1987) and Genon-

Catalot & Jacod (1993, 1994), who proved the LAMN property of discretely observed

diffusion models with unknown diffusion coefficients.

The chapter is organized as follows. In Section 6.2 we describe the transformed Gaus-

sian models. In Section 6.3 we state our main theorem of LAMN (Theorem 6.1). Several

notations and regularity conditions are explained there. In Section 6.4 the quantities ap-

peared in Theorem 6.1 are calculated for several examples. Section 6.5 is devoted to the

proof of Theorem 6.1. Finally we give some discussions in Section 6.6.

6.2 Transformed Gaussian model

Let us consider a d-dimensional time parameter Gaussian random field Y = (Yt | t ∈
[0, 1]d) defined by

Yt = γt

∫

(−∞,t]

βsν(ds) (6.1)

for t = (t1, · · · , td) ∈ [0, 1]d, where (−∞, t] =
∏d

i=1(−∞, ti], β is a nonnegative function,

γ is a positive function, and a random measure ν is a Gaussian white noise on Rd. The

regularity conditions for β and γ are described in Subsection 6.3.2. The white noise ν on

Rd is defined as a Gaussian process on the Borel-field B(Rd) of Rd with E[ν(A)] = 0 and

E[ν(A)ν(B)] = Leb(A ∩ B) for all A,B ∈ B(Rd), where Leb is the Lebesgue measure on

Rd. The covariance matrix of Y is given by

E[YtYs] = γtγs

∫

(−∞,tfs]

β2
udu,

where tfs = (t1∧s1, · · · , td∧sd) and ti∧si = min(ti, si). The process (γ−1
t Yt | t ∈ [0, 1]d)

has independent increments as stated in Subsection 6.5.4. For example, the Brownian

sheet and the Ornstein-Uhlenbeck sheet are examples of this class of processes as described

in Section 6.4.

The transformed Gaussian model for a random field X = (Xt | t ∈ [0, 1]d) is defined

by

g(Xt; t, θ) = Yt, t ∈ [0, 1]d,
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where θ ∈ Θ = [θ, θ] ⊂ R is an unknown parameter, Y = (Yt | t ∈ [0, 1]d) is defined by

(6.1) with known functions β and γ, and g : R× [0, 1]d × Θ → R is a function satisfying

the regularity conditions described in Subsection 6.3.2. Since g depends on t, we can

always assume that γt = 1 without loss of generality. However, γt is left for convenience

(see examples in Section 6.4).

We assume that the process X is discretely observed at (n+1)d equipatitioned lattice

points D̄d
n = {0, n−1, 2n−1, · · · , 1}d in [0, 1]d. Thus we treat a model

g(Xt; t, θ) = Yt, t ∈ D̄d
n. (6.2)

The model is useful for modeling processes with non-Gaussian marginal distributions.

Another advantage of the model is that the likelihood function is explicitly expressed.

6.3 Main result

6.3.1 Notations

Let (Ω,B, P) be a probability space on which the white noise ν is defined. If the parameter

θ is specified, the probability measure induced by X is denoted by Pθ. All random fields

treated in the chapter are real-valued and d-parameter processes unless otherwise stated.

Furthermore, we always assume almost sure continuity of the processes.

For a positive integer k, let [k] = {1, 2, · · · , k} and [k] = {0, 1, 2, · · · , k}. For a finite

set S, ]S denotes the cardinality of S. Recall that a variable I(A) takes 1 if a proposition

A is true, 0 otherwise.

An order ¹ on Rd is introduced: for s = (s1, · · · , sd) and t = (t1, · · · , td) ∈ Rd, we

write s ¹ t if sj ≤ tj holds for any j ∈ [d]. The infimum of s and t with respect to the

order ¹ is s f t. Rectangles
∏d

i=1[si, ti] and
∏d

i=1(si, ti] generated by s and t (s ¹ t) are

denoted by [s, t] and (s, t], respectively.

In the present chapter, discrete observations of a d-parameter stochastic process X =

(Xs | s ∈ [0, 1]d) are considered. Let n be a positive integer and δ = 1/n. The set of

observed points is lattice points D̄d
n = {0, δ, 2δ, · · · , nδ}d in the cube [0, 1]d. Let Dd

n =

{δ, 2δ, · · · , nδ}d.

For t ∈ Rd and a ⊂ [d], the a-marginal (tj)j∈a of t is denoted by ta. For t, u ∈ Rd

and a ⊂ [d], t + ua means (tj + ujI(j∈a))
d
j=1. For any λ ∈ R, the vector (λ, · · · , λ) ∈ Rd is

abbreviated by λ if there is no confusion. For example, t− δ + δa denotes a vector whose

j-th component is tj if j ∈ a, tj − δ otherwise.

The symbol ∂x denotes the partial derivative with respect to an argument x, that is,

∂x = ∂/∂x.
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6.3.2 Regularity conditions

We consider a transformed Gaussian model (6.2) for discretely observed values (Xt | t ∈
D̄d

n). The original Gaussian process (Yt | t ∈ [0, 1]d) is defined by (6.1). The space of the

unknown parameter is Θ = [θ, θ] ⊂ R. We assume the true parameter is an interior point

of Θ for simplicity.

The functions β and γ in (6.1) are assumed to satisfy the following conditions:

[Y1] The function β is positive, continuous and square integrable on (−∞, 1]d.

[Y2] The function γ is positive and differentiable d + 1 times on [0, 1]d.

The transformation function g : R× [0, 1]d×Θ → R is assumed to satisfy the following

regularity conditions:

[g1] For each (t, θ) ∈ [0, 1]d ×Θ, the function g(·; t, θ) : R→ R is one-to-one.

[g2] For each (i, j, k) ∈ [d+2]× [d+2]
d× [4], g has continuous derivatives ∂i

x∂
j
t ∂

k
θ g(x; t, θ)

on R× [0, 1]d×Θ, where the multi-index notation ∂j
t = ∂j1

t1 · · · ∂jd
td

for t and j is used.

[g3] For all (x, t, θ) ∈ R× [0, 1]d ×Θ, |∂xg(x; t, θ)| > 0 and |∂x∂θg(x; t, θ)| > 0.

From the condition [g1], there exists the inverse function g−1(·; t, θ) of g(·; t, θ) for each t

and θ. The former condition in [g3] is needed for regularity of the variation of X and the

latter condition is needed for non-degeneracy of the random Fisher information defined

later.

The condition [g4] below is useful for the proof of Theorem 6.1 but it does not need to

be assumed since a truncation method is available as discussed in Subsection 6.5.2. This

fact is also used in Chan & Wood (2004).

[g4] The derivatives ∂i
x∂

j
t ∂

k
θ g(x; t, θ) for all (i, j, k) ∈ [d+2]× [d+2]

d × [4] \ {(0, · · · , 0)}
and 1/∂xg are bounded over R× [0, 1]d ×Θ.

6.3.3 Local asymptotic mixed normality

We prepare some additional notations. Let Ln(θ) be the likelihood function for the model

(6.2) of X. Let Ap be the set of all partitions of [d] into p subsets, that is,

Ap = {{a1, · · · , ap} | ∅ ( ai ⊂ [d] (∀i); ai ∩ aj = ∅ (∀i 6= ∀j); ∪p
j=1aj = [d]}. (6.3)

For each t ∈ [0, 1]d and θ ∈ Θ, we put

Fθ(y; t, θ) = (∂θg ◦ g−1)(y; t, θ) = (∂θg)(g−1(y; t, θ); t, θ).
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For each a ⊂ [d] and t ∈ [0, 1]d, we put

qa(t) = γ2
t

∫

(−∞,t[d]\a]

β2
u

∣∣
ua=ta

du[d]\a. (6.4)

In particular, q[d](t) = γ2
t β

2
t .

The next theorem is our main result. The proof is given in Section 6.5.

Theorem 6.1. Assume the conditions [Y1], [Y2] and [g1]–[g3]. Then the model (6.2)

satisfies that, for any θ ∈ Θ, there exist random variables ξn, Jn and J such that

log Ln(θ + δd/2h)− log Ln(θ)− (hJnξn − h2

2
Jn)

P→ 0, (6.5)

Jn
P→ J, (6.6)

(ξn, Jn) ; (ξ, J), where ξ|J ∼ N(0, J−1), (6.7)

uniformly in h ∈ I for any bounded interval I ⊂ R under Pθ. In particular, the model is

LAMN. The random Fisher information J is given by

J =

∫

[0,1]d







d∑
p=1

(∂p
yFθ(Yt; t, θ))

2
∑

{a1,··· ,ap}∈Ap

qa1(t) · · · qap(t)

q[d](t)


 + (∂yFθ(Yt; t, θ))

2


 dt. (6.8)

Remark 6.2. Although we assume that Θ is a subset of R for simplicity, a generalization

of Theorem 6.1 to the case of Θ ⊂ Rk (k ≥ 2) can be proved.

Remark 6.3. Dohnal (1987) proved the LAMN property for univariate 1-parameter diffu-

sion processes. If the stochastic differential equation is integrable, Dohnal’s model results

in our model with d = 1. Genon-Catalot & Jacod (1993, 1994) generalized Dohnal’s result

to multivariate 1-parameter Markov processes with random-sampling schemes.

6.4 Examples

6.4.1 Examples of Y

We consider two examples of Gaussian processes Y and calculate the “weight”

qa1(t)qa2(t) · · · qap(t)

q[d](t)

in the expression (6.8) of the random Fisher information. Note that this quantity is always

1 when d = 1.
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Example 6.4 (Ornstein-Uhlenbeck sheet). Let λj > 0 for all j ∈ [d]. If βt =

γ−1
t = exp(

∑d
j=1 λjtj), then Yt is called the Ornstein-Uhlenbeck sheet (e.g. Arato et al.

(2001), Ying (1993)), whose covariance matrix is E[YtYs] =
∏d

j=1 exp(−λj|tj − sj|). Since

qa(t) =
∏

j /∈a(2λj)
−1, the weight is

qa1(t)qa2(t) · · · qap(t)

q[d](t)
=

(
1

2dλ1λ2 · · ·λd

)p−1

.

This is independent of each partition {a1, · · · , ap} and time t.

Example 6.5 (Brownian sheet). If βt = I(tº0) and γt = 1 in (6.1), then Yt is the Brow-

nian sheet (e.g. Khoshnevisan (2002)), whose covariance matrix is E[YtYs] =
∏d

j=1 tj ∧ sj.

Since qa(t) =
∏

j /∈a tj, the weight is

qa1(t)qa2(t) · · · qap(t)

q[d](t)
= (t1t2 · · · td)p−1.

This does not depend on each partition {a1, · · · , ap} but depends on time t. In the

example, the proof of Theorem 6.1 should be slightly modified since βt does not satisfy

[Y1]. However, the modification is straightforward and omitted.

6.4.2 Examples of g

We give two examples of the function g and elucidate some features of the random Fisher

information J . A quantity Jn = −δd∂2
θ log L

[d]
n (θ) as an approximation of J is numerically

evaluated, where L
[d]
n is the conditional likelihood of (Xt | t ∈ Dd

n) given (Xt | t ∈ D̄d
n\Dd

n)

(see Subsection 6.5.3). Since both the examples of g are independent of the time parameter

t, the argument t of functions is omitted.

Example 6.6 (scale family). Put

g(x; θ) =
h(x)√

θ

with a sufficiently smooth one-to-one known function h. Then h(Xt) is a scale-transformed

random field of Yt. The function Fθ(y; θ) used in Theorem 6.1 is Fθ(y; θ) = −y/(2θ). The

random Fisher information J = 1/(2θ2) is deterministic and independent of the covariance

function of (Yt). In this case, local asymptotic normality (LAN) holds. Figure 6.1 shows

the distribution of Jn for each n ∈ {30, 100, 300, 1000} by the Monte Carlo method,

where the original Gaussian process is the 2-parameter Ornstein-Uhlenbeck sheet with

λ1 = λ2 = 1 and the transformation function is g(x; θ) = x/
√

θ. The distributions tend

to a degenerate distribution as n →∞.
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Example 6.7 (location family). Let g be a location family given by

g(x; θ) = h(x− θ)

with a sufficiently smooth one-to-one function h. The function Fθ(y; θ) used in Theo-

rem 6.1 is Fθ(y; θ) = −h′ ◦h−1(y), where h′ is the first derivative of h. The random Fisher

information J has a common distribution to all θ ∈ R. Figure 6.2 shows the distribution

of Jn for each n ∈ {30, 100, 300, 1000} by the Monte Carlo method, where the original

Gaussian process is the 2-parameter Ornstein-Uhlenbeck sheet with λ1 = λ2 = 1 and the

transformation function is g(x; θ) = log((ex−θ + e2(x−θ))/2). The distributions tend to a

nondegenerate distribution as n →∞.

Remark 6.8. The Box-Cox transformation

g(x; θ) =

{
(xθ − 1)/θ if θ 6= 0,

log x if θ = 0

is widely used in spatial statistics. However, it is not consistent with our result since the

image of g is a proper subset of R when θ 6= 0. Modifications that allow the Box-Cox

transformation are not discussed here.
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Figure 6.1: For each n ∈ {30, 100, 300, 1000}, an empirical cumulative distribution func-

tion (ecdf) of Jn by the Monte Carlo method is shown. The original Gaussian process

is the 2-parameter Ornstein-Uhlenbeck sheet with λ1 = λ2 = 1 and the transformation

function is g(x; θ) = x/
√

θ. The model is LAN. The true parameter is θ = 1. The number

of sampling is 500 for each n.
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Figure 6.2: For each n ∈ {30, 100, 300, 1000}, an empirical cumulative distribution func-

tion (ecdf) of Jn by the Monte Carlo method is shown. The original Gaussian process

is the 2-parameter Ornstein-Uhlenbeck sheet with λ1 = λ2 = 1 and the transformation

function is g(x; θ) = log((ex−θ + e2(x−θ))/2). The model is LAMN but not LAN. The true

parameter is θ = 1. The number of sampling is 500 for each n.

6.5 Proofs

Some lemmas are prepared before giving the proof of Theorem 6.1. Subsections 6.5.1-

6.5.3 are devoted to simplification of the proof and Subsections 6.5.4-6.5.7 give technical

lemmas.

We use a notation about rate of convergence as follows. Let (zn)∞n=1 be a sequence

of random variables. The expression zn = r2(un) (zn = r(un)) for a positive sequence

(un)∞n=1 means that u−1
n zn converges to 0 in L2 (resp. in Lp for any p ≥ 1). The expression

zn = R2(un) (zn = R(un)) means that u−1
n zn is L2-bounded (resp. Lp-bounded for any

p ≥ 1). When a random sequence zn depends on t ∈ [0, 1]d and θ ∈ Θ, a statement that

zn = r2(un) uniformly in t and θ is simply denoted by zn = r2(un). The abbreviation of

stating uniformness is also used for r, R2, R and the orders o and O.

6.5.1 Reduction to the case of γt = 1

We reduce the proof to the case of γt = 1. Assume that Theorem 6.1 was proved when

γt = 1. Let γt be any positive-valued continuous function. Put Y ′
t = γ−1

t Yt, g′(x; t, θ) =

γ−1
t g(x; t, θ), q′a(t) = γ−2

t qa(t) and F ′
θ(y

′; t, θ) = (∂θg
′ ◦ (g′)−1)(y′; t, θ). The process X
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defined by (6.2) is invariant under these transformations. Since g′ satisfies [g1]-[g3] and

Y ′
t =

∫
(−∞,t]

βsν(ds) satisfies [Y1] and [Y2], the theorem for g′ holds by the assumption.

The random Fisher information is

∫

[0,1]d




d∑
p=1

((∂p
y′F

′
θ)(Y

′
t ; t, θ))

2
∑

{a1,··· ,ap}∈Ap

q′a1
(t) · · · q′ap

(t)

q′[d](t)
+ ((∂y′F

′
θ)(Y

′
t ; t, θ))

2


 dt

=

∫

[0,1]d




d∑
p=1

γ
2(p−1)
t ((∂p

yFθ)(Yt; t, θ))
2

∑

{a1,··· ,ap}∈Ap

qa1(t) · · · qap(t)

γ
2(p−1)
t q[d](t)

+ ((∂yFθ)(Yt; t, θ))
2


 dt

= J,

since F ′
θ(y

′; t, θ) = γ−1
t Fθ(γty

′; t, θ). This means that the theorem for g also holds. Thus

we assume γt = 1 without loss of generality.

6.5.2 Truncation

We explain a truncation method that reduces the proof of the theorem to one with the

additional regularity condition [g4]. The reduction is easily done because the domain of

the observed points is bounded.

Fix a function g that satisfies [g1]-[g3]. Let K be any positive number. Then there

exists a function gK that satisfies the conditions [g1]-[g4] and gK(x; t, θ) = g(x; t, θ) for

all (x, t, θ) ∈ [−K, K]× [0, 1]d ×Θ. We say that to take gK is a truncation of g because,

roughly speaking, the derivatives of gK are truncated functions of the derivatives of g,

respectively. We define a process XK = (XK
t | t ∈ [0, 1]d) by XK

t = g−1
K (Yt; t, θ). It holds

that XK
t = Xt for any K > supt∈[0,1]d |Xt|, and such a number K exists almost surely

since X has a continuous path almost surely.

Let Zn be a sequence of measurable functionals from C([0, 1]d;R) to a metric space

(S, ρ). Since

lim
K→∞

lim sup
n→∞

P[ρ(Zn(XK), Zn(X)) ≥ ε] ≤ lim
K→∞

P[XK 6= X] = 0

for any ε > 0, the assumption of the following lemma holds if we put ZK
n = Zn(XK) and

Zn = Zn(X).

Lemma 6.9. Let ZK
n and Zn be S-valued random variables. Suppose

lim
K→∞

lim sup
n→∞

P[ρ(ZK
n , Zn) ≥ ε] = 0

for any ε > 0. Then

(i) If ZK
n

P→ZK for any K and ZK P→Z, then Zn
P→Z.

(ii) If ZK
n ; ZK for any K and ZK ; Z, then Zn ; Z.
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Proof. (i) Let n →∞ and then K →∞ in the following inequality: for any ε > 0,

P[ρ(Zn, Z) ≥ ε] ≤ P[ρ(Zn, Z
K
n ) ≥ ε

3
] + P[ρ(ZK

n , ZK) ≥ ε

3
] + P[ρ(ZK , Z) ≥ ε

3
].

(ii) See Theorem 4.2 in Billingsley (1999).

From the above lemma, we can assume the additional condition [g4] in order to prove

Theorem 6.1. Specifically, we shall take Zn as the left hand side of (6.5), (6.6) and (6.7),

respectively.

6.5.3 Conditional likelihood function

Let Da
n = {(tjI(j∈a))j∈[d] | t ∈ Dd

n} for a ⊂ [d]. It holds that D̄d
n = ∪a⊂[d]D

a
n and Dd

n = D
[d]
n .

The likelihood function Ln(θ) is decomposed as Ln(θ) =
∏

a⊂[d] L
a
n(θ), where La

n(θ) is the

conditional likelihood function of (Xt | t ∈ Da
n) given (Xt | t ∈ Db

n, b ( a). Only L
[d]
n (θ)

affects the LAMN property. In fact, if we show

log L[d]
n (θ + δd/2h)− log L[d]

n (θ)− (hJnξn − h2

2
Jn)

P→ 0, (6.9)

then we can also show, by the same way,

log La
n(θ + δ]a/2h)− log La

n(θ)− (hJa
nξa

n −
h2

2
Ja

n)
P→ 0

with some tight sequences ξa
n and Ja

n for all nonempty a ( [d]. Since this convergence is

uniform in h, we replace h by δ]([d]\a)/2h to obtain

log La
n(θ + δd/2h)− log La

n(θ)
P→ 0

for all nonempty a ( [d]. It holds also for a = ∅ by direct calculations. Thus it suffices to

show (6.9) instead of (6.5).

6.5.4 A difference operator

We define a difference operator ¤a for each subset a ⊂ [d]. Let φ be any real-valued

function on D̄d
n. For each t ∈ Dd

n, we put

¤aφt =
∑

b⊂a

(−1)](a\b)φt−δ+δb
.

The inclusion-exclusion formula holds:

∑

a⊂b

¤aφt = φt−δ+δb
.
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The operator ¤a is useful to describe Taylor’s expansion as shown in the next section. In

particular, ¤{j}φt for j ∈ [d] is the partial difference of φt along j-th axis and ¤[d]φt is the

increment of φt (Khoshnevisan, 2002, p.40). For example, if d = 3 and a = {1, 2}, then

¤{1,2}φ(t1,t2,t3) = φ(t1,t2,t3−δ) − φ(t1,t2−δ,t3−δ) − φ(t1−δ,t2,t3−δ) + φ(t1−δ,t2−δ,t3−δ).

The domain whose volume is ¤aφt is shown in Figure 6.3 when φt = Leb([0, t]).

t1

δ

0
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{3}φt

{2,3}φt

{1,2,3}φt

{2}φt

{1,2}φt

{1}φt

φφt
t2

t3
δ

δ

t1

t2

t3

Figure 6.3: The domain whose volume is ¤aφt is shown, where φt = Leb([0, t]).

Let Ia,t be a rectangular set

Ia,t = {u | uj ∈ (tj − δ, tj] for j ∈ a, uj ∈ (−∞, tj − δ] for j /∈ a} .

Put

q̃a(t) = δ−]a

∫

Ia,t

β2
sds.

The quantity q̃a(t) is approximated by qa(t) uniformly in t, where qa(t) is defined by (6.4)

with γt = 1.

For the Gaussian process Y , the next lemma holds.

Lemma 6.10. Let Y be a Gaussian process given by (6.1) with γt = 1. Fix a point t

in Dd
n. Then ¤aYt (a ⊂ [d]) are independently distributed and ¤aYt ∼ N(0, δ]aq̃a(t)). In

particular, ¤aYt = R(δ]a/2).

Proof. A formula ¤aYt =
∫

Ia,t
βuν(du) holds. The independence follows from the fact

that Ia,t for a ⊂ [d] are disjoint subsets. The Lp-boundedness of (δ−]a/2¤aYt) holds since

q̃a(t) is approximated by qa(t) uniformly in t ∈ [0, 1]d.
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6.5.5 Taylor’s expansion

Lemma 6.11. Let Y be a Gaussian process (6.1). Let f be a function from (y, t) ∈
R × [0, 1]d to f(y, t) ∈ R with continuous derivatives ∂p

y∂
q
t f(y, t) for p ∈ [d+1] and

q ∈ [d+1]
d
. Assume that ∂p

y∂
q
t f(y, t) for p +

∑
j qj = d + 1 are bounded over R × [0, 1]d.

Then, for any k ≥ 1,

¤[d]f(Yt, t) =

p∑

d=1

(∂p
yf)(Yt−δ, t− δ)

∑

{a1,··· ,ap}∈Ap

p∏
j=1

(¤aj
Yt) + r(δd/2),

where Ap is defined by (6.3). In particular, ¤[d]f(Yt, t) = R(δd/2).

Proof. We prove only the case that f is independent of t ∈ [0, 1]d. The dependent case

is similarly proved. Put ∆{a1,··· ,ap} =
∏p

j=1(¤aj
Yt). From the inclusion-exclusion formula,

Taylor’s expansion, Lemma 6.10 and boundedness of the derivatives of f ,

f(Yt−δ+δa) = f(Yt−δ +
∑

∅(b⊂a

¤bYt)

= f(Yt−δ) +
d∑

p=1

f (p)(Yt−δ)

p!


 ∑

∅(b⊂a

(¤bYt)




p

+ r(δd/2)

= f(Yt−δ) +
d∑

p=1

f (p)(Yt−δ)

p!

∑
a1,··· ,ap⊂a,

]a1+···+]ap≤d

C{a1,··· ,ap}∆{a1,··· ,ap} + r(δd/2),

where C{a1,··· ,ap} is number of the term ∆{a1,··· ,ap}. In particular, C{a1,··· ,ap} = p! if

{a1, · · · , ap} ∈ Ap. Then, ¤[d]f is calculated as

¤[d]f(Yt) =
∑

a⊂[d]

(−1)]([d]\a)f(Yt−δ) + S(f) + r(δd/2)

= S(f) + r(δd/2),
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where

S(f) =
∑

a⊂[d]

(−1)]([d]\a)

d∑
p=1

f (p)(Yt−δ)

p!

∑
a1,··· ,ap⊂a,

]a1+···+]ap≤d

C{a1,··· ,ap}∆{a1,··· ,ap}

=
d∑

p=1

f (p)(Yt−δ)

p!

∑

a1,··· ,ap⊂[d],

]a1+···+]ap≤d

C{a1,··· ,ap}∆{a1,··· ,ap}
∑

b⊂[d]\(a1∪···∪ap)

(−1)]b

=
d∑

p=1

f (p)(Yt−δ)

p!

∑

a1,··· ,ap⊂[d],

]a1+···+]ap≤d

C{a1,··· ,ap}∆{a1,··· ,ap}I([d]\(a1∪···∪ap)=∅)

=
d∑

p=1

f (p)(Yt−δ)
∑

{a1,··· ,ap}∈Ap

∆{a1,··· ,ap}.

Thus the lemma follows.

6.5.6 Commuting filtration

For each t ∈ Dd
n, we define a σ-field

Ft = Fn
t = σ(Ys : s ∈ D̄d

n, s ¹ t).

Lemma 6.12. The set of σ-fields (Ft | t ∈ D̄d
n) forms a d-parameter commuting filtration,

that is, it holds that

(1) s ¹ t =⇒ Fs ⊂ Ft,

(2) ∀s, t ∈ D̄d
n; E[E[·|Ft]|Fs] = E[E[·|Fs]|Ft] = E[·|Fsft].

Proof. See Theorem 2.4.1 of Chapter 7 in Khoshnevisan (2002).

6.5.7 A lemma on convergence in L2

Lemma 6.13. Let (Ω,G, P, (Gi)1≤i≤n) be a 1-parameter filtered probability space and

(χi)
n
i=1 be a (Gi)-adapted process. If

n∑
i=1

E[χi|Gi−1]
L2→ Z (6.10)

and

χi = r2(δ
1/2), (6.11)
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then

n∑
i=1

χi
L2→ Z.

Proof. Put ξi = χi − E[χi|Gi−1]. Then (ξi)
n
i=1 is a martingale difference array. Since

E[(ξi)
2] ≤ E[(χi)

2] = o(δ),

E[(
n∑

i=1

ξi)
2] =

n∑
i=1

E[(ξi)
2] =

n∑
i=1

o(δ) = o(1).

Thus
∑n

i=1 ξi
L2→0. This implies

∑n
i=1 χi

L2→Z.

The next lemma is a multiparameter version of Lemma 6.13.

Lemma 6.14. Let (Ω,F , P, (Ft)t∈D̄d
n
) be a multiparameter filtered probability space and

(χt) be a (Ft)-adapted process. Suppose that the filtration (Ft) is commuting. If

∑

t∈Dd
n

E[χt|Ft−δ]
L2→ Z (6.12)

and

χt = r2(δ
d−1/2), (6.13)

then

∑

t∈Dd
n

χt
L2→ Z.

Proof. For each j ∈ [d], put

ξ
(j)
t = E[χt|Ft−δ[j−1]

]− E[χt|Ft−δ[j] ],

η
(j)
tj =

∑

s∈Dd
n:sj=tj

ξ(j)
s ,

F (j)
tj =

∨

s∈D̄d
n:sj¹tj

Fs

(see Figure 6.4). The filtration F (j)
tj is called a marginal filtration. The random variables

η
(j)
tj are not symmetrically defined with respect to j. The next decomposition of χt holds:

χt = E[χt|Ft−δ] +
d∑

j=1

ξ
(j)
t .
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t2

ξ(2)t

0
t1

ξ(1)t

t

{ξ(1)s |s1=t1}

Figure 6.4: The definition of ξ
(j)
t . The arrows denote the martingale differences ξ

(j)
t . The

sum of {ξ(1)
s | s1 = t1} is η

(1)
t1 .

Thus

∑
t

χt =
∑

t

E[χt|Ft−δ] +
d∑

j=1

∑
tj∈Dn

η
(j)
tj . (6.14)

The first term on the right side of (6.14) converges in probability to Z by the assumption

(6.12). Thus it suffices to show that
∑

tj∈Dn

η
(j)
tj

L2→ 0

for each j ∈ [d]. To do this, we use Lemma 6.13. By the commuting property,

E[ξ
(j)
t |F (j)

tj−δ] = E
[
E[χt|Ft−δ[j−1]

]− E[χt|Ft−δ[j] ]
∣∣∣ F (j)

tj−δ

]

= E
[
χt|Ft−δ[j]

]
− E

[
χt|Ft−δ[j]

]

= 0.

This implies that

E[η
(j)
tj |F (j)

tj−δ] =
∑

s:sj=tj

E[ξ(j)
s |F (j)

sj−δ] = 0.

Therefore the first condition (6.10) of Lemma 6.13 is satisfied with Z = 0. Next, by the

assumption (6.13),

E[(η
(j)
tj )2] =

∑
s:sj=tj

∑
u:uj=tj

E[ξ(j)
s ξ(j)

u ] = n2d−2o(δ2d−1) = o(δ).

Thus the second condition (6.11) of Lemma 6.13 is satisfied.
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6.5.8 Proof of Theorem 6.1

We abbreviate ¤[d] to ¤. For any function φ : (x, t, θ) 7→ φ(x, t, θ), φ(Xt, t, θ) is abbre-

viated to φ whenever there is no confusion. We assume γt = 1 because of the reason

mentioned in Subsection 6.5.1.

First we derive expression of the conditional likelihood function introduced in Subsec-

tion 6.5.3. The conditional density function of the Gaussian process (Yt | t ∈ Dd
n) given

(Yt | t ∈ D̄d
n \Dd

n) is

∏

t∈Dd
n

1√
2πδdq̃

exp

[
− 1

2δdq̃
(¤Y )2

]
,

where q̃ = q̃[d](t). The definition of q̃a(t) is in Subsection 6.5.4. The conditional likelihood

function L
[d]
n (θ) is explicitly given by

L[d]
n (θ) =

∏

t∈Dd
n

∂xg√
2πδdq̃

exp

[
− 1

2δdq̃
(¤g)2

]
.

The conditional log likelihood function `n is expressed as

`n = `n(θ) = log L[d]
n (θ) =

∑

t∈Dd
n

[
−(¤g)2

2δdq̃
+ log ∂xg

]
. (6.15)

By differentiating `n,

∂θ`n =
∑

t∈Dd
n

[
−(¤g)(¤∂θg)

δdq̃
+

∂θ∂xg

∂xg

]
, (6.16)

∂2
θ`n =

∑

t∈Dd
n

[
−(¤∂θg)2

δdq̃
− (¤g)(¤∂2

θg)

δdq̃
+

∂2
θ∂xg

∂xg
−

(
∂θ∂xg

∂xg

)2
]

, (6.17)

∂3
θ`n =

∑

t∈Dd
n

[
−3(¤∂θg)(¤∂2

θg)

δdq̃
− (¤g)(¤∂3

θg)

δdq̃
+ ∂2

θ

(
∂θ∂xg

∂xg

)]
. (6.18)

It suffices to prove (6.9), (6.6) and (6.7) with

Jn = −δd∂2
θ`n,

ξn = (Jn)−1δ
d
2 ∂θ`n.

Since the quantities `n, Jn and ξn are measurable functions of the path X, we assume the

additional condition [g4] without loss of generality by Lemma 6.9.

(6.9): `n(θ + δd/2h)− `n(θ) = hJnξn − h2

2
Jn + oP(1).
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Proof. By Taylor’s formula, it suffices to prove that

sup
h:|h|≤M

δd|∂2
θ`n(θ + δ

d
2 h)− ∂2

θ`n(θ)| P→ 0 (6.19)

for all M > 0 under Pθ. By using Taylor’s formula again, we obtain

δd[∂2
θ`n(θ + δ

d
2 h)− ∂2

θ`n(θ)] = hδ
3d
2 ∂3

θ`n|
θ+ψδ

d
2 h

,

where ψ is some (0, 1)-valued random variable. From the condition [g4] and Lemma 6.11,

[
−3(¤∂θg)(¤∂2

θg)

δdq̃
− (¤g)(¤∂3

θg)

δdq̃
+ ∂2

θ

(
∂θ∂xg

∂xg

)]
= R(1).

Thus, by (6.18),

∣∣∣δ 3d
2 ∂3

θ`n

∣∣∣
θ+ψδ

d
2 h

= r(1)

uniformly in h, and (6.9) is proved.

(6.6): Jn
P→J .

Proof. The next formula is useful:

∂y(f ◦ g−1) = (∂xf/∂xg) ◦ g−1 (6.20)

for any function f : x 7→ f(x). By multiplying −δd to (6.17), substituting Xt =

g−1(Yt; t, θ) and applying the formula (6.20), we obtain

−δd∂2
θ`n =

∑

t∈Dd
n

[
q̃−1(¤Fθ)

2 + q̃−1(¤F )(¤Fθθ)− δdF
(1)
θθ + δd(F

(1)
θ )2

]
, (6.21)

where we put F = g ◦ g−1 = id, Fθ = (∂θg) ◦ g−1, Fθθ = (∂2
θg) ◦ g−1 and f (p) = ∂p

yf

for any function f , and we omit the arguments Yt, t and θ. By using the formula (6.20)

recursively and the condition [g4], it is shown that the derivatives ∂p
y∂

q
t Fθ and ∂p

y∂
q
t Fθθ

for any (p, q) ∈ [d+1] × [d+1]
d

are bounded over the region R × [0, 1]d × Θ. Therefore

Lemma 6.11 implies

¤F = ∆{[d]},

¤Fθ =
d∑

p=1

F
(p)
θ−

∑

{a1,··· ,ap}∈Ap

∆{a1,··· ,ap} + r(δd/2),

¤Fθθ =
d∑

p=1

F
(p)
θθ−

∑

{a1,··· ,ap}∈Ap

∆{a1,··· ,ap} + r(δd/2),
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where F
(p)
θ− and F

(p)
θθ− are abbreviations of F

(p)
θ (Yt−δ) and F

(p)
θθ (Yt−δ), respectively, and

∆{a1,··· ,ap} =
∏p

j=1(¤aj
Yt). By the relation Yt − Yt−δ = r(1), formulas

F
(1)
θθ = F

(1)
θθ− + r(1),

F
(1)
θ = F

(1)
θ− + r(1)

hold. By substituting these into (6.21), we obtain

−δd∂2
θ`n =

∑

t∈Dd
n

χt + r(1),

where

χt =
d∑

p,q=1

q̃−1F
(p)
θ−F

(q)
θ−

∑

{a1,··· ,ap}∈Ap

∑

{b1,··· ,bq}∈Aq

∆{a1,··· ,ap}∆{b1,··· ,bq}

+
d∑

r=1

q̃−1F
(r)
θθ−∆{[d]}

∑

{c1,··· ,cr}∈Ap

∆{c1,··· ,cr} − δdF
(1)
θθ− + δd(F

(1)
θ− )2.

In the following, we use Lemma 6.14 to show
∑

χt
P→J . The symbols used below follow

from ones in Lemma 6.14. From Lemma 6.10,

E[∆{a1,··· ,ap}∆{b1,··· ,bq}|Ft−δ] = I({a1,··· ,ap}={b1,··· ,bq})

p∏
r=1

E[(¤arYt)
2]

= I({a1,··· ,ap}={b1,··· ,bq})δ
d

p∏
r=1

q̃ar(t)

This implies

∑

t∈Dd
n

E[χt|Ft−δ] =
∑

t∈Dd
n

δd

(
q̃−1

d∑
p=1

(F
(p)
θ− )2

p∏
r=1

q̃ar(t) + (F
(1)
θ− )2

)
+ r(1)

L2→
∫

t∈[0,1]d

(
q[d](t)

−1

d∑
p=1

(F
(p)
θ (Yt; t, θ))

2

p∏
r=1

qar(t) + (F
(1)
θ (Yt; t, θ))

2

)
dt

= J,

where L2-convergence comes from almost sure convergence of the Riemannian sum and

L2-boundedness of it. On the other hand, the relation χt = R(δd) holds because of the

condition [g4] and Lemma 6.10. Therefore (6.13) is satisfied. Thus
∑

χt
L2→J .

(6.7): (ξn, Jn) ; (ξ, J).

Proof. Fix h ∈ R. It suffices to show the contiguity of Pθ+δd/2h to Pθ and the convergence

Jn
P→J under Pθ+δd/2h (see Lemma 3 of Section 6.6 in Le Cam & Yang (2000) ).
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We first prove the convergence Jn
P→J under Pθ+δd/2h by assuming the contiguity of

Pθ+δd/2h to Pθ. By replacing θ in the proof of (6.6) with θ + δd/2h and using a fact that

F
(p)

θ+δd/2h
= F

(p)
θ + r(1), one shows −δd∂2

θ`n(θ + δd/2h)
P→J under Pθ+δd/2h. On the other

hand, we obtain | − δd∂2
θ`n(θ + δd/2h) − Jn| P→0 under Pθ+δd/2h due to (6.19) and the

contiguity of Pθ+δd/2h to Pθ. Thus Jn
P→J under Pθ+δd/2h.

Next we prove the contiguity according to the outline of the proof of Corollary 3

in Genon-Catalot & Jacod (1994). For θ, θ′ ∈ Θ and α ∈ (0, 1), the Hellinger process

h(α; θ, θ′)n = {h(α; θ, θ′)n
t | t ∈ Dd

n} is defined by

h(α; θ, θ′)n
t =

∑
sCt

(
1− Eθ′ [p

α
s,θp

−α
s,θ′ |Hs]

)
.

Here C is a total order on Dd
n with a property that s ¹ t implies s C t (e.g. any

lexicographic order), Hs is a filtration
∨

uCs,u6=sFu with respect to C (see Figure 6.5), and

ps,θ is the conditional density function of Xs given Hs. From the commuting property,

the Hellinger process at t = (1, · · · , 1) is written as

h(α; θ, θ′)n
1 =

∑

s∈Dd
n

(
1− Eθ′ [p

α
s,θp

−α
s,θ′|F−

s ]
)
, F−

s =
d∨

j=1

Fs−δ{j}

without use of C. If one shows that

lim sup
α↓0

lim sup
n→∞

Pθ+δd/2h[h(α; θ, θ + δd/2h)n
1 > η] = 0 (6.22)

for any η > 0, then the contiguity of Pθ+δd/2h to Pθ follows from (Jacod & Shiryaev, 1987,

Theorem V.2.27). It suffices to show

h(α; θ, θ + δd/2h)n
1

P→ α(1− α)h2

2
J (6.23)

under Pθ+δd/2h. We put θ′ = θ + δd/2h. In the following, any appropriate constant

independent of n is denoted by C and any appropriate [−1, 1]-valued random variable is

denoted by ψ = ψ(θ, h, t). Although they should be denoted as Ci (i = 1, 2, · · · ) and ψi

(i = 1, 2, · · · ), the indices are abbreviated for simplicity. From the definition,

pt,θ =
∂xgθ√
2πδdq̃

exp

[
−(¤gθ)

2

2δdq̃

]
,

where gθ is an abbreviation of g(Xt; t, θ). Thus

Eθ′ [1− pα
t,θp

−α
t,θ′|F−

t ]

= 1− E

[
exp

(
−α(¤gθ ◦ g−1

θ′ )2

2δdq̃
+

α(¤Y )2

2δdq̃
+ α log

∂xgθ

∂xgθ′
◦ g−1

θ′

)∣∣∣∣F−
t

]
.

= 1− E[exp(K)|F−
t ], (6.24)
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where

K = −α(¤gθ ◦ g−1
θ′ )2

2δdq̃
+

α(¤Y )2

2δdq̃
+ α log

∂xgθ

∂xgθ′
◦ g−1

θ′ .

Taylor’s expansion of exp(K) is

exp(K) = 1 + K +
K2

2
+

K3eψK

6
. (6.25)

The conditional expectation of each term is evaluated as follows. We first expand K with

respect to θ. By Taylor’s formula and the condition [g4],

¤gθ ◦ g−1
θ′ = ¤gθ′−δd/2h ◦ g−1

θ′

= ¤Y − δd/2h¤Fθ′ +
δdh2

2
¤Fθ′θ′ − δ3d/2h3

6
¤Fθ′θ′θ′ + Cψδ2d

log
∂xgθ

∂xgθ′
◦ g−1

θ′ = −δd/2hF
(1)
θ′ +

δdh2

2
F

(1)
θ′θ′ −

δdh2

2
(F

(1)
θ′ )2 + Cψδ3d/2.

Since ¤Fθ′ , ¤Fθ′θ′ and ¤Fθ′θ′θ′ are R(δd/2) (Lemma 6.11),

K = −α(¤gθ ◦ g−1
θ′ )2

2δdq̃
+

α(¤Y )2

2δdq̃
+ α log

∂xgθ

∂xgθ′
◦ g−1

θ′

= − α

2δdq̃

(
¤Y − δd/2h¤Fθ′ +

δdh2

2
¤Fθ′θ′ − δ3d/2h3

6
¤Fθ′θ′θ′ + Cψδ2d

)2

+
α(¤Y )2

2δdq̃
+ α

(
−δd/2hF

(1)
θ′ +

δdh2

2
F

(1)
θ′θ′ −

δdh2

2
(F

(1)
θ′ )2 + Cψδ3d/2

)
(6.26)

=
αh

δd/2q̃
(¤Y )(¤Fθ′)− αh2

2q̃
(¤Y )(¤Fθ′θ′)− αh2

2q̃
(¤Fθ′)

2

−αδd/2hF
(1)
θ′ +

αδdh2

2
F

(1)
θ′θ′ −

αδdh2

2
(F

(1)
θ′ )2 + r(δd). (6.27)

Let us evaluate E[K|F−
t ]. If we put Y −

t = Yt − ¤Yt and abbreviate F−
t -measurable

[−1, 1]-valued random variables by ψ−, then

¤Fθ′ =
∑

a([d]

(−1)]([d]\a)Fθ′(Yt−δ+δa) + Fθ′(Yt)

= Cψ− + Fθ′(Yt)

= Cψ− + F
(1)
θ′ (Y −

t )¤Y +
F

(2)
θ′ (Y −

t )

2
(¤Y )2 + r(δd).

From this and a relation F
(1)
θ′ = F

(1)
θ′ (Y −

t ) + F
(2)
θ′ (Y −

t )¤Y + r(δd/2), Lemma 6.10 implies

E[(¤Y )(¤Fθ′)− δdq̃F
(1)
θ′ |F−

t ] = r(δ3d/2).
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Similarly,

E[(¤Y )(¤Fθ′θ′)|F−
t ] = δdq̃F

(1)
θ′θ′− + r(δd).

For f = Fθ and f = Fθ′ , we define

S−(f) =
d∑

p=2


f

(p)
−

∑

{a1,··· ,ap}∈Ap

∆{a1,··· ,ap}


 .

Then S−(f) is F−
t -measurable and S−(f) = R(δd/2). From the relation ¤Fθ′ = S−(Fθ′)+

F
(1)
θ′−¤Y + r(δd) (Lemma 6.11), we obtain

E[(¤Fθ′)
2|F−

t ] = (S−(Fθ′))
2 + δdq̃(F

(1)
θ′−)2 + r(δd).

By substituting these formulas into (6.27) and using F
(p)
θ′− = F

(p)
θ− + r(1), we obtain

E[K|F−
t ] =

αh2

2q̃

[
−(S−(Fθ))

2 − 2δdq̃(F
(1)
θ− )2

]
+ r(δd), (6.28)

We next evaluate E[K2|F−
t ]. From the relation F

(1)
θ′ = F

(1)
θ′− + r(1), we have

E[{(¤Y )(¤Fθ′)− δdq̃F
(1)
θ′ }2|F−

t ]

= E[{(¤Y )S−(Fθ′) + ((¤Y )2 − δdq̃)F
(1)
θ′− + r(δd)}2|F−

t ]

= δdq̃(S−(Fθ′))
2 + 2δ2dq̃2(F

(1)
θ′−)2 + r(δ2d).

Using this formula, (6.27) and F
(p)
θ′− = F

(p)
θ− + r(1), we obtain

E[K2|F−
t ] =

α2h2

q̃

[
(S−(Fθ))

2 + 2δdq̃2(F
(1)
θ− )2

]
+ r(δd). (6.29)

We evaluate E[K3eψK |F−
t ] finally. From the boundedness of ¤Fθ′ , ¤Fθθ′ , ¤Fθ′θ′θ′ , F

(1)
θ′

and F
(1)
θ′θ′ , (6.26) implies

|K| ≤ C(1 + |Ut|),

where Ut = δ−d/2q̃−1/2¤Y ∼ N(0, 1). Thus eψK = R(1). From this and K = R(δd/2),

E[K3eψK |F−
t ] = R(δ3d/2) = r(δd). (6.30)

By using (6.25), (6.28), (6.29) and (6.30), we obtain

E[1− exp(K)|F−
t ] =

α(1− α)h2

2q̃

[
(S−(Fθ))

2 + 2δdq̃(F
(1)
θ− )2

]
+ r(δd).
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If one puts

χt = q̃−1(S−(Fθ))
2 + 2δd(F

(1)
θ− )2,

then h(α; θ, θ′)n
1 = (α(1− α)h2/2)

∑
t∈Dd

n
χt + r(1). By Lemma 6.14, we have

∑

t∈Dd
n

χt =
∑

t∈Dd
n

E[χt|Ft−δ] + r2(1)

=
∑

t∈Dd
n

δd


q̃−1

d∑
p=2

(F
(p)
θ− )2

∑

{a1,··· ,ap}∈Ap

p∏
j=1

q̃aj
(t) + 2(F

(1)
θ− )2


 + r2(1)

L2→ J.

Thus (6.23) is proved.

t10

t

F-t

t1 1

t2

t2

Ht

Figure 6.5: The filtration Ht is indicated when a lexicographic order is adopted.

6.6 Discussions

We studied the LAMN property of a class of transformed Gaussian models. We assumed

that the original Gaussian process is the product of a deterministic process and a process

with independent increments and that data is observed on regular lattice points. We

expect that these two assumptions can be relaxed.

We concentrated to prove the LAMN property and did not discuss estimation, predic-

tion, model selection and other statistical inference. Their asymptotic properties are also

important and further investigation is required.



Chapter 7

Information criterion for LAMN

models

The contents in this chapter are reported in Sei & Komaki (2004).

7.1 Introduction

Consider a model Pn = {pn(·|θ) | θ ∈ Θ ⊂ Rk} (n = 1, 2, · · · ) on a sequence of measure

spaces (Ωn,Fn, µn), where pn(·|θ) is a probability density with a parameter θ. We recall

the definition of the LAMN property (see Chapter 3).

Definition 7.1. Let θ ∈ Θ. A model (Pn)∞n=1 is called locally asymptotically mixed normal

(LAMN) at θ if there exist a sequence of matrices γn = γn,θ ∈ Rk×k, a random matrix

J = Jθ and a random vector ξ with ξ|J ∼ N(0, J−1) such that for any h ∈ Rk and any

convergent sequence hn → h

log
pn(x|θ + γnhn)

pn(x|θ) = h′Jn,θξn,θ − 1

2
h′Jn,θh + opn(1),

(ξn,θ, Jn,θ) ; (ξ, J).

Here ′ denotes transpose of a vector. In particular, (Pn)∞n=1 is locally asymptotically normal

(LAN) if J is deterministic.

The following three examples of LAMN models are analyzed later.

Example 7.2. We give a trivial example (Le Cam & Yang, 2000, p.121). Let x1, · · · , xν

be an independently and identically distributed (i.i.d.) sequence subject to the probability

density p(x1|θ) and ν be a random variable independent of xi’s. If ν/n weakly converges

to a non-degenerate random variable c and p(x1|θ) satisfies some mild conditions, the

79
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model has the LAMN property with γn = 1/
√

n and J = cJ0, where J0 is the Fisher

information matrix of p(x1|θ).

Example 7.3 (Discretely observed diffusion models). Let X be a 1-dimensional

diffusion process defined by the follwing stochastic differential equation

dXt = a(Xt, θ)dWt + b(Xt, θ)dt, X0 = x0, t ∈ [0, 1],

where x0 is the fixed initial value of X, a and b are smooth bounded functions and W is

a standard Wiener process. When θ is estimated from the discretely observed data Xti ,

where ti = i/n for i = 1, · · · , n, it is known that the model has the LAMN property with

γn = 1/
√

n (Dohnal, 1987; Genon-Catalot & Jacod, 1993, 1994). The random Fisher

information matrix is

J = 2

∫ 1

0

[
∂

∂θ
log a(Xt, θ)

] [
∂

∂θ′
log a(Xt, θ)

]
dt.

Example 7.4 (Partially explosive Gaussian AR models). Let us consider the Gaus-

sian AR(2) model with known variance

Xt = β1Xt−1 + β2Xt−2 + εt, εt
i.i.d.∼ N(0, 1), t ∈ {1, · · · , n},

X0 = X−1 = 0.

Let θ1 and θ2 be two roots of the characteristic equation θ2 − β1θ− β2 = 0. Assume that

θ1 > 1 > |θ2|. We use (θ1, θ2) as the parameter. Then the model is LAMN with the

normalization matrix γn,θ = diag(θ−n
1 , n−1/2). The random Fisher information matrix is

J = diag

[
χ2

1

1− θ−2
1

,
1

1− θ2
2

]
,

where χ2
1 is a random variable subject to the chi-square distribution with one degree of

freedom. This result is generalized to any Gaussian AR(k) model for k ≥ 1 (Jeganathan,

1988, Theorem 16).

For examples other than described above, branching processes (See e.g. van der Vaart

(1998)) and some class of semimartingale models (Luschgy, 1992) are LAMN. In Chap-

ter 6, we have proven that the transformed Gaussian models are LAMN.

The LAMN property implies the convergence of the likelihood ratio to that of the

corresponding mixed normal model (van der Vaart, 1998, Theorem 9.8). Therefore it

allows us to reduce statistical problems to those of the mixed normal model. Several
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rigorous results including the convolution theorem and the local asymptotic minimax

theorem are stated in Chapter 3.

We propose an information criterion for LAMN models by studying the corresponding

mixed normal model. Since the Akaike’s Information Criterion (AIC) is derived based

on the LAN property (Akaike, 1974), it cannot be directly used to model selection of

LAMN models. The proposed criterion Bayes-LAMN-IC for LAMN models is defined as

an asymptotically unbiased estimator of the loss of Bayesian prediction. The loss function

we adopt is equivalent to the Kullback-Leibler divergence. Here the Bayesian prediction

is used since it dominates the plug-in predictive distribution as given in Section 7.3. We

also give several other criteria based on other predictive distributions for comparison.

Some notations and assumptions are prepared in Section 7.2. For the mixed normal

model, the Bayesian and some other predictive distributions are compared in Section 7.3.

In Section 7.4, Bayes-LAMN-IC is defined for the mixed normal model. The criterion for

non-limit models is given in Section 7.5. Simulation studies for the (not asymptotically)

mixed normal model, the discretely observed diffusion model and the partially explosive

Gaussian AR model are given in Section 7.6.

7.2 Notations and assumptions

We fix a full LAMN model {pn(x|θ) | θ ∈ Θ ⊂ Rk} and focus on its submodels. The

corresponding full limit model is {p(ξ, J |h) = p(ξ|h, J)p(J) | h ∈ Rk}, where h, ξ and

J are defined in Definition 7.1. The conditional density p(ξ|h, J) is φ(ξ|h, J−1), where

φ(x|µ, Σ) is the density of normal distribution with the mean vector µ and the covariance

matrix Σ. The marginal density p(J) of the random Fisher information matrix J does

not depend on h from the definition. We use symbols indicated in Table 7.1.

Table 7.1: The symbols used in the chapter.

full model submodel α ∈ A

non-limit model {pn(x|θ) | θ ∈ Θ ⊂ Rk} {pn(x|θ) | θ ∈ Θα}
limit model {p(ξ|h, J) | h ∈ Rk} {p(ξ|h, J) | h ∈ Hα}

In the table, A is the index set of submodels. For each α ∈ A, Θα is a kα-dimensional

subset in Θ, where 0 ≤ kα ≤ k. Let θα be a smooth embedding map from Rkα to Θα and

Bα ∈ Rk×kα is the derivative matrix of θα. The subspace corresponding to α in the limit

model is denoted by Hα = {h = Bαu | u ∈ Rkα}.
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We denote E = Ek as the identity matrix of size k. We put J−α = Bα(B′
αJBα)−1B′

α

and πα = J−α J . The matrix πα is a (random) projection operator from Rk to Hα. A

relation παJ−1π′α = J−α JJ−α = J−α holds.

We assume that the true parameter h of the limit model is an arbitrary point in Rk.

This corresponds to a local alternate in hypothesis testing. For each submodel α ∈ A, we

put hα = παh and ξα = παξ for the true parameter h and an observation ξ. The quantity

ξα is the maximum likelihood estimator for the subspace Hα, whose conditional mean and

variance are E[ξα|J ] = hα and Var[ξα|J ] = J−α , respectively. The random variable hα is

considered as “the true parameter in Hα” because it gives the nearest distribution in Hα

to the true one. The phenomenon that the true parameter is random does not appear in

the LAN situation.

We assume that the prior distribution Pα(dh) under the model α is the uniform dis-

tribution on Hα. Use of the uniform prior for the limit model is natural in the sense that

any smooth prior density for the non-limit model is locally approximated by the uniform

prior density. The posterior distribution Pα(dh|ξ, J) is the degenerate normal distribution

with mean ξα and variance J−α , since its characteristic function is

ψh|ξ,J(λ) :=

∫
exp(iλ′h) p(ξ|h, J) Pα(dh)∫

p(ξ|h, J) Pα(dh)

=

∫
Rkα exp

[
iλ′Bαu− 1

2
(ξ −Bαu)′J(ξ −Bαu)

]
du∫

Rkα exp
[−1

2
(ξ −Bαu)′J(ξ −Bαu)

]
du

= exp

[
iλ′ξα − 1

2
λ′J−α λ

]
.

7.3 Risk of prediction

In this section and the next section, we consider the problem of prediction for limit

models. The problem is prediction of (η, J̃) from an observation (ξ, J), where (η, J̃) and

(ξ, J) are independently and identically distributed with true parameter h ∈ Rk. Since the

distributions of the random information matrices J and J̃ are independent of h, they are

considered as ancillary statistics. Thus the prediction problem is reduced to that of η from

ξ conditionally on J and J̃ . When J and J̃ are conditioned, the arguments are usually

abbreviated, for example, q(η|ξ) = q(η|ξ, J, J̃). Expectations are taken conditionally on

J and J̃ unless otherwise stated.

The loss of a predictive distribution q(η|ξ) is defined by

l(q(·|ξ)) = −2

∫
p(η|h) log q(η|ξ) dη,
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which is equivalent to the Kullback-Leibler divergence
∫

p(η|h) log(p(η|h)/q(η|ξ))dη. The

risk is denoted by r(q) =
∫

p(ξ|h)l(q(·|ξ)) dξ.

We construct four predictive distributions by classifying Bayesian or plug-in, and

LAMN or LAN.

Definition 7.5. The Bayes-LAMN, plugin-LAMN, Bayes-LAN and plugin-LAN distri-

butions are defined by

qB
α (η|ξ) =

∫
p(η|h, J̃) Pα(dh|ξ, J),

qp
α(η|ξ) = p(η|ξα, J̃),

qBN
α (η|ξ) =

∫
p(η|h, J) Pα(dh|ξ, J),

qpN
α (η|ξ) = p(η|ξα, J),

respectively.

Lemma 7.6. The predictive distributions defined in Definition 7.5 are expressed explicitly

by

qB
α (η|ξ) = φ(η|ξα, J̃−1+J−α ),

qp
α(η|ξ) = φ(η|ξα, J̃−1),

qBN
α (η|ξ) = φ(η|ξα, J−1+J−α ),

qpN
α (η|ξ) = φ(η|ξα, J−1),

respectively.

Proof. The first expression is obtained by using the characteristic function

ψB
η|ξ(λ) :=

∫
exp(iλ′η) qB

α (η|ξ) dη

=

∫∫
exp(iλ′η) p(η|h, J̃) Pα(dh|ξ, J) dη

=

∫
exp

[
iλ′h− 1

2
λ′J̃−1λ

]
Pα(dh|ξ, J)

= exp

[
iλ′ξα − 1

2
λ′(J̃−1 + J−α )λ

]
.

The other expressions are also easily obtained.

We introduce a class of predictive distributions including the four predictive distribu-

tions considered above.



84 CHAPTER 7. INFORMATION CRITERION FOR LAMN MODELS

Definition 7.7. Let Σα = Σα(J, J̃) be a k × k positive definite matrix. Then the Σ-

predictive distribution is defined by

qΣ
α (η|ξ) = φ(η|ξα, Σα).

The Bayes-LAMN, plugin-LAMN, Bayes-LAN and plugin-LAN distributions are Σ-

predictive distributions with

ΣB
α = J̃−1 + J−α ,

Σp
α = J̃−1,

ΣBN
α = J−1 + J−α ,

ΣpN
α = J−1,

respectively.

The next two lemmas about the loss and risk of the Σ-predictive distributions are

obtained by an elementary calculation.

Lemma 7.8. Let h ∈ Rk. The loss of the predictive distribution qΣ
α is

l(qΣ
α (·|ξ)) = (h−ξα)′Σ−1

α (h−ξα) + tr[Σ−1
α J̃−1] + log det Σα.

Lemma 7.9. Let h ∈ Rk. The risk of the predictive distribution qΣ
α is

r(qΣ
α ) = (h−hα)′Σ−1

α (h−hα) + tr[Σ−1
α (J̃−1 + J−α )] + log det Σα.

The next theorem reveals superiority of the Bayes-LAMN prediction qB
α in a certain

sense. This is a generalization of Lemma 3.17 in which only the full model Θα = Θ is

considered. Therefore we use the Bayes-LAMN distribution for the prediction problem

throughout the chapter.

Theorem 7.10. (i) Let h ∈ Rk. Then

r(qB
α ) < r(qp

α).

(ii) Let h ∈ Hα. Then

r(qB
α ) ≤ r(qΣ

α )

for any k × k positive definite matrix Σα. The equality holds if and only if qΣ
α = qB

α .
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Proof. Let h ∈ Rk and let Σ = Σα be any k × k positive definite matrix. By Lemma

7.6 and Lemma 7.9,

r(qΣ
α )− r(qB

α )

= (h−hα)′(Σ−1−(J̃−1+J−α )−1)(h−hα)

+tr[Σ−1/2(J̃−1 + J−α )Σ−1/2]− k − log det[Σ−1/2(J̃−1 + J−α )Σ−1/2]

≥ (h−hα)′(Σ−1−(J̃−1+J−α )−1)(h−hα)

because of an inequality

tr C − k − log det C ≥ 0

for any non-negative definite matrix C, where the equality holds if and only if C = E. If

Σ = J̃−1, then (h−hα)′(Σ−1−(J̃−1+J−α )−1)(h−hα) ≥ 0 for any h ∈ Rk. Thus (i) holds.

On the other hand, if h ∈ Hα, then h = hα. Thus (ii) holds.

Remark 7.11. The difference between r(qp
α) and r(qB

α ) is quite large if J is close to

zero relative to J̃ . Let h ∈ Hα for simplicity. If the maximum eigenvalue of Cα =

J̃1/2(J̃−1+J−α )J̃1/2 is λ̄ > 1, then the difference is assessed as

r(qp
α)− r(qB

α ) = trCα − k − log det Cα

≥ λ̄− 1− log λ̄.

On the other hand, the expectation of twice the Kullback-Leibler risk of qB
α is

r(qB
α )− r(p) = 2

∫∫
p(η|h, J̃) log

p(η|h, J̃)

qB
α (η|ξ) dη dξ

= k + log det(J̃−1+J−α )− k − log det J̃−1

= log det Cα

≤ k log λ̄.

Thus

r(qp
α)− r(qB

α )

r(qB
α )− r(p)

≥ λ̄− 1− log λ̄

k log λ̄
→ ∞

as λ̄ →∞. Similarly, the difference between r(qΣ
α ) and r(qB

α ) is very large for any Σ if J

is close to zero relative to J̃ .
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7.4 Proposed information criterion

We introduce an information criterion Bayes-LAMN-IC for limit models, which forms

−2 log qB
α (ξ|ξ) + cα with some correcting term cα. Expectations are taken conditionally

on J and J̃ unless otherwise stated.

We first define criteria based on Σ-predictive distributions. Bayes-LAMN-IC is a

special case of them.

Definition 7.12. Fix Σα. An information criterion Σ-IC is defined by

Σ-IC = Σ-IC(α) = Σ-IC(α, ξ, J, J̃)

:= (ξ−ξα)′Σ−1
α (ξ−ξα) + log det Σα + tr[Σ−1

α (J̃−1 − J−1 + 2J−α )]. (7.1)

The selected model by the criterion is denoted by

α̂Σ = α̂Σ(ξ) = α̂Σ(ξ, J, J̃) := argmin
α∈A

Σ-IC(α). (7.2)

In particular, for i ∈ {B, p, BN, pN}, Σ i -IC is called Bayes-LAMN-IC, plugin-LAMN-IC,

Bayes-LAN-IC and plugin-LAN-IC, respectively. In particular,

Bayes-LAMN-ICα = −2 log qB
α (ξ|ξ) + tr

[
(J̃−1+J−α )−1(J̃−1−J−1+2J−α )

]
.

Theorem 7.13. The information criterion Σ-IC(α) is the unique unbiased estimator of

the risk r(qΣ
α ).

Proof. Put cα = tr[Σ−1
α (J̃−1−J−1+2J−α )]. The expectation of Σ-IC(α) is

∫
p(ξ|h, J) Σ-IC(α) dξ

=

∫
p(ξ|h, J)

[
(ξ−ξα)′Σ−1

α (ξ−ξα)
]

dξ + log det Σα + cα

= (h−hα)′Σ−1
α (h−hα) + tr

[
Σ−1

α (J−1−J−α )
]
+ log det Σα + cα

= (h−hα)′Σ−1
α (h−hα) + tr

[
Σ−1

α (J̃−1+J−α )
]

+ log det Σα

= r(qΣ
α )

by Lemma 7.9. Uniqueness holds due to the completeness of the statistic ξ (Lehmann &

Casella, 1998, p.42 and p.87).

Proposition 7.14. The information criterion plugin-LAN-IC is equivalent to AIC.

Proof. By putting Σα = J−1 in (7.1), it is shown that

plugin-LAN-IC(α) = −2 log qpN
α (ξ|ξ) + 2kα + tr[J(J̃−1−J−1)].
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Since the last term is independent of α, plugin-LAN-IC is equivalent to AIC.

We adopt Bayes-LAMN-IC among Σ-IC’s because it is compatible with the Bayes-

LAMN prediction, which has the dominating property obtained in Theorem 7.10. It

should be noted that the criterion does not coincide with AIC even if a LAN model is

considered. For LAN models, both Bayes-LAMN-IC and Bayes-LAN-IC coincide with

PIC = −2 log qBN
α (ξ|ξ) + kα (7.3)

when the uniform prior is used (Kitagawa, 1997). It is stated in Chapter 4. The per-

formance of PIC and AIC does not seem very different since J is deterministic for LAN

models. On the other hand, for LAMN models, the difference between Bayes-LAMN-IC

and AIC is quite serious as remarked after Theorem 7.10.

We compare Σ-IC’s for different Σ’s in Section 7.6. The risk R of the model selection

procedure based on Σ-IC is defined by the risk of the Bayesian prediction based on the

model selection procedure using Σ-IC, that is,

R = R(Σ, h) = E[r(qB
α̂Σ)], (7.4)

where E denotes the expectation with respect to J and J̃ . Recall that α̂Σ is the selected

model (7.2). An information criterion Σ-IC whose risk R is small is a good criterion.

In practice, a model selection is implemented without use of J̃ . For this purpose, we

define an expectation version of Σ-IC by
∫

Σ-IC(α, ξ, J, J̃)p(J̃)dJ̃ .

We don’t use the expected version of Σ-IC for the numerical examples in Section 7.6 since

the performance of an information criterion is assessed by its performance of prediction.

7.5 Information criterion for non-limit models

In this section, the information criteria for limit models defined in the previous section

are restored to those for the non-limit models. Only a heuristic definition is given here.

The conditions for asymptotic properties such as contiguity of the selected predictive

distribution are not discussed.

Let θ̂ and θ̂α be the maximum likelihood estimators (or other asymptotically efficient

estimators) for the full model and the submodel α ∈ A, respectively. Our Σ-IC for the

non-limit models is, by using Σ-IC for the limit models,

Σ-IC(α)|J=J(n),J̃=J̃(n),(ξ−ξα)=(ξ−ξα)(n) , (7.5)
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where a matrix J (n) is defined by

J (n) := − ∂2

∂u∂u′
log pn(x|θ̂ + γnu)

∣∣∣∣
u=0

, (7.6)

J̃ (n) is given by replacing x in (7.6) with y and

(ξ − ξα)(n) := γ−1
n (θ̂ − θ̂α).

Under mild conditions, J (n), J̃ (n) and (ξ − ξα)(n) converge to J , J̃ and ξ − ξα as n →∞,

respectively.

In general, J (n) and J̃ (n) may not be positive definite. Therefore some modification

is needed. For the discretely observed diffusion models (Example 7.3), we can use a

non-negative definite matrix J ](n) instead of J (n) defined by

J ](n) :=
n∑

i=1

2

n

[
∂

∂θ
log a(Xti , θ̂)

∂

∂θ′
log a(Xti , θ̂)

]
. (7.7)

The matrix J ](n) is used at the numerical experiments in Subsection 7.6.2.

7.6 Examples

Three examples are considered here. In Subsection 7.6.1, some theoretical and exper-

imental results for a limit model are given. Subsection 7.6.2 is devoted to a numerical

study of the discretely observed diffusion models. Subsection 7.6.3 deals with the partially

explosive Gaussian AR model.

7.6.1 Scalar-randomness models

Let J = cJ0 with a 1-dimensional positive random variable c and a deterministic matrix J0

as Example 7.2 in Section 7.1. We call it a scalar-randomness model. If we consider nested

submodels, the information criterion has a simple representation. Let A = {0, 1, · · · , k}.
Suppose that H0 = {0} ⊂ Rk and Hα is an α-dimensional subspace of Rk including Hα−1

for 1 ≤ α ≤ k. Put J̃ = c̃J0 where c̃ is a random variable independent of c and has the

same distribution as c.

We assume that J0 = E and Hα = {(a1, · · · , aα, 0, · · · , 0) | a1, · · · , aα ∈ R} without

loss of generality. The loss l(qB
α (·|ξ)) of the Bayesian prediction is, by Lemma 7.8,

l(qB
α (·|ξ)) =

α∑
i=1

[
(c̃−1+c−1)−1{(hi−ξi)

2+c̃−1}+ log(c̃−1+c−1)
]

+
k∑

i=α+1

[
c̃h2

i + 1 + log c̃−1
]
,
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where ξi and hi is the i-th component of ξ and h, respectively.

We consider only Σ-IC satisfying the condition that Σα is a diagonal matrix whose

i-th diagonal component σi is s = s(c, c̃) if i ≤ α and t = t(c, c̃) otherwise, where s and

t are common in all α. The four criteria (Bayes-LAMN, plugin-LAMN, Bayes-LAN and

plugin-LAN) satisfy the condition as indicated in Table 7.2. The expression of Σ-IC is

Σ-IC(α) =
α∑

i=1

[
s−1(c̃−1+c−1) + log s

]
+

k∑
i=α+1

[
t−1ξ2

i + t−1(c̃−1−c−1) + log t
]

=
k∑

i=1

[
s−1(c̃−1+c−1) + log s

]
+ t−1

k∑
i=α+1

(ξ2
i − ξ̄2),

where

ξ̄2 = t
[
s−1(c̃−1+c−1) + log s− t−1(c̃−1−c−1)− log t

]
.

For fixed α ∈ A, the set Ξα of ξ such that α̂Σ(ξ) = α is given by

Ξα = Lα ∩Gα,

where

Lα = {ξ | ∀j ≤ α,

α∑
i=j+1

(ξ2
i − ξ̄2) > 0}

and

Gα = {ξ | α < ∀j ≤ k,

j∑
i=α+1

(ξ2
i − ξ̄2) < 0}.

The quantities s, t and ξ̄2 corresponding to the four criteria are summarized in Ta-

ble 7.2, where we put r = c̃/c.

If s = t, then ξ̄2 = 2c−1, which is independent of s. Thus, by Proposition 7.14, the

next proposition holds.

Proposition 7.15. Suppose that the model is a scalar-randomness model and Σα is com-

mon in all α ∈ A. Then Σ-IC is equivalent to AIC.

Consider the scalar-randomness model with dimension k = 10. Assume that c takes

only two values
√

10 and 1/
√

10 with the same probability. We numerically evaluate the

risk R of the model selection procedures (eq. (7.4)).

Figure 7.1 indicates R of FULL (which always selects the full model: ξ̄2 = 0), Bayes-

LAMN-IC, Bayes-LAN-IC, AIC and BOUND (which is a lower bound based on the “best
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Table 7.2: The quantities s, t and ξ̄2 corresponding to the four predictive distributions.

(r = c̃/c)

prediction s t ξ̄2

Bayes-LAMN c̃−1 + c−1 c̃−1 c−1(r−1 log(1 + r) + 1)

plugin-LAMN c̃−1 c̃−1 2c−1

Bayes-LAN 2c−1 c−1 c−1(log 2 + 3
2
− 1

2r
)

plugin-LAN c−1 c−1 2c−1

selection” α̂ = argmin l(qB
α ) using the true h), respectively. The true parameter h takes

its value in Di = {diei | di ∈ [0, 10]} for i ∈ {1, · · · , 10}, where ei = (0, · · · , 0, 1, 0, · · · , 0)

is the i-th unit vector in R10. The horizontal axis denotes di such that h = diei.

The figure shows that Bayes-LAMN-IC is better than AIC especially for h ∈ Di

(i = 4, · · · , 10). Although the minimax criterion is FULL, the difference between risks

of Bayes-LAMN-IC and BOUND is stable throughout the parameter space compared

to that of FULL and BOUND. This kind of stability is considered important from the

view point of model selection. The difference between risks of an information criterion

and BOUND is nothing else the regret defined in Chapter 4. From the above numerical

experiment, the maximum regret over h ∈ ∪10
i=1Di of Bayes-LAMN-IC, Bayes-LAN-IC,

AIC and FULL is 5.17, 14.0, 12.7 and 9.7, respectively. Thus Bayes-LAMN-IC is best.

However, if we replace the distribution of c by a two-point distribution on 10 and 1/10

(with prob. 1/2 each), the result is changed: the maximum regret of Bayes-LAMN-IC,

Bayes-LAN-IC, AIC and FULL over h ∈ ∪10
i=1Di is 44, 160, 141 and 15, respectively. The

criterion FULL is best in this example. Nevertheless, Bayes-LAMN-IC remains to have

better performance than Bayes-LAN-IC and AIC.

7.6.2 Discretely observed diffusion models

Let us consider the discretely observed diffusion model stated in Example 7.3 of Sec-

tion 7.1. The example used here is

dXt =
1 + θX2

t

1 + X2
t

dWt, X0 = 0, θ > 0, (7.8)

which satisfies the regularity condition in Genon-Catalot & Jacod (1994). Two submodels

ΘI = {θ | θ = 1} and ΘII = {θ | θ > 0} are compared, where A = {I, II} is the index set.

If θ = 1, Xt = Wt.
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Figure 7.2 gives a numerical result about the risk R of the model selection procedure

based on Bayes-LAMN-IC and AIC. The simulation algorithm for Σ-IC is as follows.

1. Fix integers L and L̃. For each l = 1, 2, · · · , L,

(a) Generate a path {Xt(l) | t ∈ { 1
n
, · · · , n

n
}} according to the true parameter θ.

Calculate the maximum likelihood estimator θ̂(l) for the full model and the

random Fisher information J ](n)(l) by the formula (7.7).

(b) For l̃ = 1, 2, · · · , L̃, generate L̃ paths {Yt(l, l̃) | t ∈ { 1
n
, · · · , n

n
}} according to the

estimated parameter θ̂(l). Calculate the random Fisher information J̃ ](n)(l, l̃).

(c) Select one of the submodels according to Σ-IC determined by eq. (7.5) and

calculate the loss `(l, l̃) of the selected predictive distribution, where the loss

is also calculated by LAMN approximation for simplicity.

2. Calculate R = (LL̃)−1
∑L

l=1

∑L̃
l̃=1 `(l, l̃).

The number of sampling points is n = 100. The number of loops is L = L̃ = 1000 for

each true θ ∈ {0.25, 0.50, · · · , 3.00}. In the example, Bayes-LAMN-IC is better than AIC

in the minimax sense.

7.6.3 A partially explosive Gaussian AR model

Let us consider the partially explosive Gaussian AR(2) model stated in Example 7.4 of

Section 7.1. Two submodels ΘI = {θ | θ1 > 1, θ2 = 0} and ΘII = {θ | θ1 > 1, |θ2| < 1} are

compared, where A = {I, II} is the index set. Let J = diag(J11, J22), J̃ = diag(J̃11, J̃22)

and ξ = (ξ1, ξ2)
′.

Since J̃22 = J22, Bayes-LAMN-IC’s for the two submodels are

Bayes-LAMN-IC(I) = ξ2
2(2J

−1
22 )−1 + log(J̃−1

11 +J−1
11 ) + log(J−1

22 ) + 1,

Bayes-LAMN-IC(II) = log(J̃−1
11 +J−1

11 ) + log(2J−1
22 ) + 2.

Their difference is ξ2
2J22/2− (log 2 + 1). On the other hand,

Bayes-LAN-IC(I) = ξ2
2(2J

−1
22 )−1 + log(2J−1

11 ) + log(J−1
22 ) + 1,

Bayes-LAN-IC(II) = log(2J−1
11 ) + log(2J−1

22 ) + 2.

Their difference is ξ2
2J22/2−(log 2+1). Therefore both Bayes-LAMN-IC and Bayes-LAN-

IC are equivalent to PIC (eq. (7.3)). In particular, J̃ is not needed in order to calculate

them. Similarly, both plugin-LAMN-IC and plugin-LAN-IC are equivalent to AIC. These
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properties hold for any AR(k) model if we consider only submodels where some of the

stationary components of θ are restricted to zero.

We now compare Bayes-LAMN-IC and AIC by finite-sample experiments. Figure

7.3 gives a numerical result about the risk R of the model selection procedure based on

Bayes-LAMN-IC and AIC. The simulation algorithm for Bayes-LAMN-IC is as follows.

A similar algorithm is used for AIC.

1. Fix L and L̃. For each l = 1, · · · , L,

(a) Generate a path {Xt(l) | t ∈ {1, · · · , n}} according to the true parameter θ.

Calculate the maximum likelihood estimator θ̂α(l) and Bayes-LAMN-IC(α) for

each model α ∈ A.

(b) Calculate the loss `(l) by the Monte-Carlo method, that is, generate L̃ paths

{Yt(l, l̃) | t ∈ {1, · · · , n}} (l̃ = 1, · · · , L̃) according to the true parameter θ

and take the sample mean: `(l) = L̃−1
∑L̃

l̃=1 2 log{pn(Y |θ)/qB
n (Y |X)}, where

qB
n (Y |X) is the selected predictive distribution by Bayes-LAMN-IC.

2. Calculate R = L−1
∑L

l=1 `(l).

The number of sampling points is n = 100. The number of loops is L = L̃ = 1000 for

each θ = (θ1, θ2) ∈ {1.03}×{0.00, 0.05, 0.10, · · · , 1.00}. In the example, Bayes-LAMN-IC

is slightly better than AIC in the minimax sense.

7.7 Discussions

We proposed an information criterion Bayes-LAMN-IC for LAMN models. It is the unique

unbiased estimator of the risk of the Bayesian prediction. We numerically compared

it with other criteria including AIC. For the scalar-randomness model, the risk of the

model selection procedures based on Bayes-LAMN-IC was relatively stable over the true

parameter space. For the discretely observed diffusion model and the partially explosive

Gaussian AR model, the maximum risk of the model selection procedure based on Bayes-

LAMN-IC was less than the maximum risk of the procedure based on the other criteria.

These numerical results show that Bayes-LAMN-IC is better than the other criteria.

The remaining tasks are to give many numerical experiments, real data analysis, the-

oretical evaluation of the risk and characterization of Bayes-LAMN-IC. Another future

work is to construct a version of Bayes-LAMN-IC like Takeuchi’s information criterion

(TIC; see Chapter 4). It is naturally constructed for the i.i.d. models with random num-

ber of samples. We believe that it is also available for the discretely observed diffusion

models.
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Figure 7.1: The risk R of the model selection procedures for the scalar-randomness model.

The true parameter h takes its value in Di = {(0, · · · , 0, di, 0, · · · , 0) ∈ R10 | di ∈ [0, 10]}
for each i ∈ {1, · · · , 10}, where (0, · · · , 0, di, 0, · · · , 0) denotes the vector whose i-th coor-

dinate is di. The horizontal axis denotes di such that h = (0, · · · , 0, di, 0, · · · , 0).
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Figure 7.2: The risk R of the model selection procedures for the discretely observed

diffusion model (eq. (7.8)). The confidence interval is based on 3 times of the standard

deviation.
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Figure 7.3: The risk R of the model selection procedures for the partially explosive Gaus-

sian AR(2) model. The horizontal axis denotes θ2. The value of θ1 is fixed to 1.03. The

confidence interval is based on 3 times of the standard deviation.



Chapter 8

Conclusion

We showed consistency of the quasi maximum likelihood estimator under the semipara-

metric setting in Chapter 5. We proved the LAMN property of a restricted class of

transformed Gaussian models in Chapter 6. We proposed an information criterion Bayes-

LAMN-IC for LAMN models in Chapter 7. By combining latter two results, we obtain a

prediction procedure based on Bayes-LAMN-IC for transformed Gaussian models. From

the first result, we believe that the LAMN property for more general transformed Gaussian

models than the restricted class in Chapter 6 is proved in the future.
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