Errata to

"Calculating the normalising constant of the Bingham distribution on the sphere using the holonomic gradient method," *Statistics and Computing*, 2015, Vol. 25, pp. 321–332 by Tomonari Sei and Alfred Kume

Nov 5, 2019

We correct errors regarding the Laplace inversion as follows.

• Line 15 on the right column of page 321 should be

$$c(\boldsymbol{\theta}) = \frac{\Gamma(p/2)c(\mathbf{0})}{2\pi i} \int_{t_0 - i\infty}^{t_0 + i\infty} \frac{1}{\prod_{k=1}^p \sqrt{-\theta_k - t}} e^{-t} dt, \tag{3}$$

• Line 7 on the right column of page 331 should be

$$= \frac{\Gamma(p/2)c(\mathbf{0})}{2\pi} \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} \frac{1}{\prod_{k} \sqrt{-\theta_k - is}} e^{-is - \epsilon s^2/2} ds.$$

• Line 9 on the same page and column should be

$$c(\boldsymbol{\theta}) = \frac{\Gamma(p/2)c(\mathbf{0})}{2\pi} \int_{-\infty}^{\infty} \frac{1}{\prod_{k} \sqrt{-\theta_k - is}} e^{-is} ds$$

• Line 12 on the same page and column should be

$$c(\boldsymbol{\theta}) = \frac{\Gamma(p/2)c(\mathbf{0})}{2\pi} \int_{-\infty}^{\infty} \frac{1}{\prod_{k} \sqrt{-\theta_k - t_0 - is}} e^{-t_0 - is} ds \qquad (29)$$

These errors do not affect the main results in the paper since the expressions are used only for derivation of the linear differential equations, which are invariant under scalar multiplication.

Acknowledgement The authors are grateful to Yici Chen for pointing out the errors.